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Executive Summary

This document summarizes the work performed in Task 6.6 of Work Package 6 of the Secure-
Change project funded by the European Commission within the Seventh Framework Programme.
The overall objective of Work Package 6 is the development of verification techniques for evol-
ving systems, with a strong focus on the development time and deployment time phases of the
software lifecycle.

In the first two years of the project, WP6 developed several technologies to support verification
of evolving systems. These technologies include off-device, development-time verification
techniques, and on-device, deployment-time verification techniques.

For the off-device techniques, the theory was developed in the first year (reported in delive-
rable D6.1), and a prototype was developed in the second year (reported in deliverable D6.2). In
the third and final year, work has focused on the evaluation and validation of these results in the
SecureChange case studies. This deliverable D6.6 reports on the application of our off-device
verifier to the POPS and HOMES case studies. In summary, our results show that our prototype
verifier is ready to handle real industrial code (both JavaCard and C code), that verification is
performed fast even on code bases of thousands of lines of code, and that verification finds bugs.
On the downside, we find that applying our verification technique is labor intensive. In particular,
we find that the annotation overhead (i.e. the amount of annotation that the developer/verification
engineer has to provide) is relatively high. To counter this disadvantage, we have started to work
on inference of annotations, and report on the first results in this direction.

For the on-device techniques, the theory was developed in the first two years of the project
(reported in deliverables D6.3 and D6.4), and a prototype implementation of the most promising
techniques for JavaCard was developed in the third and final year, and is reported on in deli-
verable D6.5. The prototype deliverable D6.5 (released together with this deliverable) reports
both on the implementation, as well as on the evaluation and validation of the implemented
techniques in the POPS case study. For some of the on-device techniques, no implementation
was developed, but a rigorous on-paper analysis of the feasibility of applying these techniques
to the SecureChange case studies was developed, and is reported on in this deliverable. In
particular, we show that the memory consumption for the global policy and non-interference
models developed in D6.3 and D6.4 in the POPS case study is acceptable, and we show the
applicability of the Security-by-Contract approach developed in D6.3 and D6.4 to the HOMES
case study.

Finally, an important objective of Task 6.6 is to show how all techniques developed in WP6
fit together. To this end, we develop an integrated scenario from the POPS case study, that
shows how the off-device and on-device techniques work together and address complementary
security properties.

In line with the reviewers recommendations, this deliverable is structured as follows: we
provide a technical summary of results of approximately 50 pages, and refer to appendices for
more detailed information. Three of these appendices correspond to published or submitted
scientific papers.
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1. Introduction

The key objective of the SecureChange project is the development of tools and techniques to
ensure lifelong compliance to evolving security, privacy and dependability requirements for long-
running and evolving software-based systems. To achieve this objective, the project studies and
improves the state-of-the-art in several phases of the software lifecycle, including requirements
engineering, architectural design, detailed design, implementation, verification and testing.

The focus of Work Package 6 of the project is on the implementation and verification phases,
but it includes also the usage phase, as the question how to securely update and evolve running
systems is very much in scope for Work Package 6.

Work Package 6 has two main lines of work. The first line (consisting of Tasks 6.1, 6.2 and
6.6) concerns the development of off-device, development-time verification techniques that can
ensure the absence of certain classes of vulnerabilities (such as memory safety or concurrency
related vulnerabilities), and the development of proof-of-concept tools that implement these
techniques for the programming languages used in the SecureChange case studies (JavaCard
and C). Such techniques and tools support secure and correct evolution of the code and changes
to the code by making implicit developer assumptions explicit in annotations, and by checking
that these assumptions are not violated during code evolution.

The second line of work (Tasks 6.3, 6.4, 6.5 and 6.6) concerns the development of on-device,
deployment-time verification algorithms. This includes techniques to verify code access control
and information flow security of dynamically loaded code, and extensions to the Security-by-
Contract paradigm. Such techniques support the secure extensibility of open systems that
support deployment of new components at run-time (such as deployment of new applets in the
POPS case study or deployment of new bundles in the HOMES case study).

Task 6.6 brings these two lines of work together by showing how the techniques developed
for on-device and off-device verification complement each other.

This report deliverable D6.6 is released together with prototype deliverable D6.5. D6.5
delivers the implementation of the on-device techniques for direct and transitive control flow, and
reports on their evaluation and validation in the POPS case study. D6.6 reports all the other
results in WP6. Hence, the main objective of this final report deliverable in WP6 is threefold:

1. We report on the evaluation and validation of the off-device verification techniques. Three
important results are reported on. First, we perform an extensive experiment in the POPS
case study: we verify a sizable JavaCard applet implementing an electronic identity card.
An experience report is summarized in Section 3.1. Second, we report our progress on
the verification of a core security module taken from the HOMES case study (Section 3.2).
Finally, since an important conclusion of these first two experiments is that annotation
overhead is high, we report on techniques we developed to reduce annotation overhead
(Section 3.3).

2. We report on the progress on the on-device verification techniques that were not implemen-
ted. (The implemented techniques are reported in D6.5) More specifically, we evaluate the
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applicability of the global policy model to POPS (Section 4.1), the applicability of the non-
interference model to POPS (Section 4.2) and the applicability of the security-by-contract
model for direct control flow to HOMES (Section 4.3).

3. We show how the different techniques developed in WP6 work together by developing an
integrated scenario on the POPS case study that comprised four communicating JavaCard
applets (Section 2), and demonstrate all implemented WP6 techniques on this scenario.
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2. An Integrated Scenario on the POPS Case
Study

The SecureChange POPS case study is situated in the application area of Java Card / Global-
Platform based multi-application smart cards. A more detailed overall description of the POPS
case study is given in D1.1 [4]. Work Package 6 focuses on the verification of application-level
security properties, and hence focuses on the Java Card applets in the POPS case study (as
opposed to the platform implementation itself). POPS is the main case study for Work Package
6, and all technologies developed in WP6 have been evaluated on the POPS case study.

In this chapter, we describe one integrated scenario, consisting of four interacting Java Card
applications. In later chapters, we will show how each of the WP6 technologies contributes to ve-
rifying security properties for this scenario. This scenario was created from several components.
First, we started from the POPS scenario provided by the industrial partner Gemalto/Trusted
labs. This scenario includes an ePurse and a jTicket applet as described in Deliverable D1.1.
Since the applets in the provided scenario are relatively small, these applets alone do not
allow us to demonstrate scalability of our techniques. Hence, we extended the scenario with
two significantly larger applets: an anonymized electronic purse applet MyApplet (shared by
Gemalto), and an open-source implementation of an electronic identity card (the EidCard ap-
plet). Finally, in order to show the full power of the on-device verification techniques, we further
increased the interactions taking place between these four applets. The modified applets are
called NewEPurse, NewJTicket, NewEidCard and NewMyApplet, respectively. Figure 2.1 depicts
the modified applications and interactions among them. This Figure also specifies the package
AIDs (PAIDs) of the applets.

We now briefly summarize the functionality of each application used in the integrated scenario
and detail how we modified them. Some more details about the content of each application/pa-
ckage are given in Appendix C.

• The ePurse applet comprises functionality of a GlobalPlatform-based electronic purse ap-
plication. We are using the GlobalPlatform library provided by Gemalto/Trusted Labs for
deployment of this applet. This application provides a service debit() in the Shareable
interface IEPurseService available for other applications on the card. The Shareable inter-
face in the new applet was renamed into IEPurseServiceDebit. We have also added another
Shareable interface IEPurseServiceCredit with two services transaction() and charge() to the
applet, functionality of these services is the same as of debit().

• The jTicket applet is a Java Card transport application, its functionality allows to buy tickets
through usage of payment services of the ePurse application.

• EidCard is a Belgian electronic ID application. We have added to it the Shareable interface
INewEidPoints with the service sharePoints(). Also the NewEidCard applet tries to invoke
the service charge() of the NewEPurse applet.
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Figure 2.1: Schema of the Integrated Scenario

• MyApplet is an anonymized electronic purse applet shared by Gemalto, which has more
complex structure than ePurse. It is GlobalPlatform-based and for deployment we use the
GlobalPlatform library provided by Gemalto/Trused Labs. We have added the Shareable
interface IENewMyAppletPoints() with the method sharePoints(). NewMyApplet application
as well tries to access the services transaction() and debit() of the NewEPurse applet and
the service sharePoints() of the NewEidCard applet.

Since there is no existing real code yet that makes full use of the interoperability mechanisms
provided by the most recent versions of JavaCard / GlobalPlatform, we constructed the scenario
above so that it contains substantial challenges for the verification techniques developed in WP6:
it includes both newly-developed, greenfield code, as well as existing legacy code. It contains
small as well as medium sized (over 1000 lines of code) applets. And it allows for collaborations
between several independently developed applets. We should acknowledge however that from
an application point of view, the scenario is artificial. The scenario is intended to demonstrate
all the technical challenges we want to overcome; it is not intended to be a realistic example
application.

The off-device verification technique (i.e. the VeriFast verification tool, reported in D6.2) was
evaluated on this scenario. All applets were verified with VeriFast, giving strong guarantees for
the protection against Denial of Service security property: the successful verification guarantees
the absence of run time exceptions such as array out of bounds exceptions or null pointer
dereference exceptions. We discuss the verification of the largest applet (the electronic identity
card applet) in more detail in Chapter 3 of this deliverable, and in appendix A we include a
published paper that includes a more extensive experience report.

The on-device verification techniques presented in D6.5 were tested on the integrated
scenario. For both prototypes, the SxC prototype and the EVE-TCFprototype, the testing
procedures included building compliant and non-compliant specifications (contracts and policies)
for each applet using the CAP file modification tools developed in WP6. Partners have tried
different scenarios of application loading and removal. These extensive testing procedures were
conducted in order to validate functionality of the prototypes on real-life applications. This is
reported in the tool deliverable that describes these prototypes (D6.5).
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Finally, the on-device verification techniques that were developed but not implemented (i.e.
the global policy and non-interference models from D6.3 and D6.4) have been evaluated on this
case study on paper, and the results of this evaluation are reported in Chapter 4.
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3. Off-Device Verification

In this chapter we report on the application of the VeriFast ([30] and D6.2 [48]) software verifica-
tion tool to the POPS and HOMES case studies as described in D1.1 [4]. We further present
research on mitigating the annotation overhead imposed by VeriFast by means of automatically
generating parts of the required annotations.

3.1 POPS: Verification of Java Card Applets

A high-level overview of POPS is given in D1.1 [4]. In this section we outline technical aspects of
the Java Card platform and report on the successful verification of the eID applet. An extended
version of the material of this section has been published in [46] (c.f. App. A).

3.1.1 Java Card Applets

The entry point of each Java Card applet is a class that extends the built-in, abstract class
javacard.framework.Applet. This class defines a number of methods that are called by the
Java Card runtime to interact with the applet. In particular, the class Applet defines an abstract
method process that must be overridden by the subclass. The implementation of process forms
the core of the applet. More specifically, process takes an APDU (i.e. a wrapper around a byte
array) as input, processes it, and possibly returns an updated APDU to the runtime. Typically, the
APDU contains both information on the action that should be performed by the applet and data
associated with that action.

A subclass of javacard.framework.Applet is a valid applet only if it declares a static method
called install. The goal of this method is to create a new applet instance and to register this
instance with the runtime. The class MyApplet shows the prototypical structure of a Java Card
applet.

Listing 3.1: The prototypical structure of an applet.

1 class MyApplet extends Applet {
2 public static void install(byte[] arr , short offset , byte length) {
3 MyApplet applet = new MyApplet ();
4 // initialize the applet
5 applet.register ();
6 }
7
8 public void process(APDU apdu) {
9 // process the apdu

10 }
11 }
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Transactions. Java Card applets use two types of memory to store data and intermediate
results. Fields and objects are stored in persistent EEPROM memory, whereas the stack (and
hence local variables) are stored in volatile RAM memory. In addition, the applet can also
choose to allocate arrays in RAM memory, because this type of memory is faster and is harder
for attackers to read. This complicates things because the smart card may lose power at any time
during the computation, which results in the RAM memory being wiped, whereas the EEPROM
memory retains the intermediate results.

To preserve consistency of the data stored in persistent memory, Java Card supports
transactions. More specifically, the platform defines three methods to interact with the tran-
saction mechanism: beginTransaction, commitTransaction, and abortTransaction. When
beginTransaction is called, all changes to persistent memory are made conditionally. Only
when a call to commitTransaction is executed, the changes to the persistent memory are
committed atomically. If abortTransaction is called instead, or if the card suddenly loses power
before calling commitTransaction, the persistent memory is restored to its original state (on card
boot-up when power is restored). Note that the transaction mechanism does not impact values
stored in RAM. Incorrect use of the transaction API, for example calling beginTransaction while
a transaction is already in progress, results in an exception.

Java Card and VeriFast. VeriFast was originally developed for C and Java programs, but has
been modified to also support Java Card applications. The Java language used for Java Card
applications is a precise subset of the full Java language, thus adding Java Card support to
VeriFast was easy.

Java Card does, however, use a very different class library optimized for smart cards. VeriFast
needs to know for every function in the library the pre- and postconditions in order to reason
about code. These specifications are placed in a separate file that defines all the classes and
methods in the Java Card framework. The specifications are based on the descriptions of these
methods in the official Java Card documentation. The actual implementation of these library
functions is not checked.

Building the specification file is an incremental process. VeriFast only needs pre- and
postconditions for the methods that are actually used by the applications you want to verify.
Hence, only a subset of the full Java Card class library has been annotated in the specification
file. It is critical that the specifications of library functions is correct; errors in their annotations
could lead to errors in the verification process. Therefore, extreme diligence is used when adding
new function definitions to the specification.

3.1.2 The eID Applet

The Belgian Electronic Identity Card (eID) was introduced in 2003 as a replacement for the
existing non-electronic identity card. Its purpose is to enable e-government and e-business
scenarios where strong authentication is necessary. The card has the size of a standard credit
card and features an embedded chip. In addition to containing a machine readable version of
the information printed on the card, the chip also contains the address of the owner and two
RSA key pairs with the corresponding X509 certificates. One key pair is used for authentication,
whereas the other key pair can be used to generate legally binding electronic signatures.

The card is implemented on top of the Java Card platform (Classic Edition) and implements
the smart card commands as defined in the ISO7816 standard. Unfortunately, the actual code
that runs on the eID cards is not publicly available. For our case study, we used an open
source, cloned version of the eID applet that implements the same functionality as the real
eID card. The source code of the applet can be downloaded from http://code.google.com/
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p/eid-quick-key-toolset/. The applet is aimed at developers who wish to interact with eID
cards as an easy to use and customizable testing platform.

The eID implementation consists of one large class called EidCard and a few other small
helper classes. The EidCard class inherits from the Applet class and encapsulates about 80%
of the entire code base. It is a complex class of about 900 lines of code and no less than 38
fields.

Specification of Transaction Correctness. Java Card offers transactions to preserve consis-
tency of the data stored in persistent memory. However, what does it mean for an applet to
be consistent? In VeriFast, developers can explicitly write down what fields are part of the
persistent state together with the desired consistency conditions. More specifically, the class
Applet defines an instance predicate called valid. Each subclass must override this predicate.
The implementation of the predicate given in the subclass defines the consistency conditions for
the applet at hand. For example, consider the applet class ExampleApplet shown below. The
predicate valid indicates that both the fields arr and i, and the array pointed to by arr are part
of the persistent state (line 6). Moreover, the predicate imposes the consistency condition that i
is a valid index in arr (line 7).

Listing 3.2: The contract of the process method, using fractional permissions.

1 class ExampleApplet extends Applet {
2 short i;
3 short[] arr;
4 /*@
5 predicate valid () =
6 this.arr |-> ?arr &*& this.i |-> ?i &*&
7 array_slice(arr , 0, ?len , _) &*&
8 0 <= i &*& i < len;
9 @*/

10 }

While reading fields is possible at any time, updates to persistent memory should be made
inside of a transaction. The permission system used by VeriFast is the key to enforcing this
property. More specifically, at the start of the process method, no transaction is in progress. As
shown in Lst. 3.3, the precondition of process contains 1/2 of the valid predicate. This means
that the method can read but not update fields included in valid (as the method only has one
half of the permissions included in valid). The predicate current_applet is simply a token
describing the currently active applet.

Listing 3.3: The contract of the process method, using fractional permissions.

1 public void process (...)
2 //@ requires current_applet(this) &*& [1/2] valid() &*& ...;
3 //@ ensures current_applet(this) &*& [1/2] valid () &*& ...;
4 {
5 ...
6 }

To update the fields of the applet, the method should somehow gain additional permissions
(namely the other half of the valid predicate). These additional permissions can be acquired
by calling beginTransaction. In particular, the postcondition of beginTransaction shown in
Figure 3.4 gives 1/2 of the valid predicate. The process method can then merge [1/2]valid()
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(gained from the precondition of process) and [1/2]valid() (gained from the postcondition of
beginTransaction) into [1]valid(). The full permission to valid gives the applet the right to
modify the applet’s fields for the duration of the transaction. When calling commitTransaction,
half of the permissions included in the valid() predicate return to the system again. Note
that it is impossible to call commitTransaction if the applet is in an invalid state (according
to the conditions described by valid), as the precondition of commitTransaction requires the
consistency conditions to hold.

Listing 3.4: The declaration of the beginTransaction and commitTransaction methods

1 public static void beginTransaction ();
2 //@ requires current_applet (?a) &*& ...;
3 //@ ensures current_applet(a) &*& [1/2]a.valid() &*& ...;
4
5 public static void commitTransaction ();
6 //@ requires current_applet (?a) &*& a.valid() &*& ...;
7 //@ ensures current_applet(a) &*& [1/2]a.valid() &*& ...;

Inheritance. The ISO7816 standard specifies a mechanism to access files that are stored on
a smart card. Three types of files are defined:

1. Master files represent the root of the file system. Each smart card contains at most one
master file.

2. Elementary files contain actual data.

3. Dedicated files behave like directories. They can contain other dedicated or elementary
files.

To represent this structure, the eID implementation uses helper classes that form a class
hierarchy. The root of the hierarchy is the abstract File class. This class has two sub-
classes: DedicatedFile and ElementaryFile. And finally, the MasterFile class inherits from
DedicatedFile.

When a class is defined in the source code, it can be annotated with a predicate that
represents an instance of that class. These predicates can then be used elsewhere to represent
a fully initialized instance of that class. Lst. 3.5 shows how a File predicate can be defined for
the corresponding File class. The class consists of two fields, which are also represented in the
predicate. The predicate can also contain other information about the class such as invariants.

Listing 3.5: A first definition of the File class and predicate.

1 public abstract class File {
2 /*@ predicate File(short theFileID , boolean activeState) =
3 this.fileID |-> theFileID &*&
4 this.active |-> activeState; @*/
5
6 private short fileID;
7 protected boolean active;
8
9 ...

10 }

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 18/98



The ElementaryFile class redefines the File predicate as shown in lines 2-4 of Lst. 3.6. A
File predicate that is associated with an ElementaryFile class is defined as an ElementaryFile
predicate where three of the five parameters are undefined.

The definition of the ElementaryFile predicate (lines 5-13) consists of a link to the File
predicate defined in Lst. 3.5 and some extra fields and information that are specific to elementary
files.

Listing 3.6: A first definition of the ElementaryFile class and predicate.

1 public final class ElementaryFile extends File {
2 /*@ predicate File(short theFileID , boolean activeState) =
3 ElementaryFile(theFileID , ?dedFile , ?dta ,
4 activeState , ?sz); @*/
5 /*@ predicate ElementaryFile(short fileID ,
6 DedicatedFile parentFile , byte[] data ,
7 boolean activeState , short size) =
8 this.File(File.class)(fileID , activeState) &*&
9 this.parentFile |-> parentFile &*&

10 this.data |-> data &*& data != null &*&
11 this.size |-> size &*&
12 array_slice(data , 0, data.length , _) &*&
13 size >= 0 &*& size <= data.length; @*/
14
15 private DedicatedFile parentFile;
16 private byte[] data;
17 private short size;
18
19 ...
20 }

When an object is cast from the File to the ElementaryFile class (or vice versa), the
corresponding predicate on the symbolic heap must be changed as well. We ‘annotated’ this
by adding the methods that are defined in Lst. 3.7 to the ElementaryFile class and calling
these methods when required. Obviously, this solution is far from elegant because it requires
adding calls to stub functions in the code of the applet. The most recent version of VeriFast
supports annotating this behavior as lemma methods (i.e. methods defined inside an annotation),
removing the requirement of modifying the applet’s code.

Listing 3.7: Functions to cast predicates.

1 public void castFileToElementary ()
2 //@ requires [?f]File(?fid , ?state);
3 //@ ensures [f]ElementaryFile(fid , _, _, state , _);
4 {
5 //@ open [f]File(fid , state);
6 }
7
8 public void castElementaryToFile ()
9 //@ requires [?f]ElementaryFile (?fid , ?dedFile , ?dta , ?state , ?sz);

10 //@ ensures [f]File(fid , state);
11 {
12 //@ close [f]File(fid , state);
13 }

One problem that occurs with the methods presented in Lst. 3.7 is that information is lost
when an ElementaryFile is cast to a File and then back again to an ElementaryFile. This
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loss of information happens in the castFileToElementary method where three parameters are
left undefined.

There are some instances in the eID applet where this loss of information is problematic. The
solution was to extend the File and ElementaryFile predicates to contain an extra parameter
that can store any information. The result can be seen in Lst. 3.8. Line 3 shows the definition of
this extra parameter. In the case of the File class, no extra information is kept and the parameter
is defined to be empty (denoted as ‘unit’ on line 5). Similarly, line 22 defines the parameter to be
empty for the ElementaryFile predicate, because all state information that can be stored in the
predicate is fully defined by the other parameters.

Line 14 shows the case where the predicate needs the extra parameter to store additional
information about the object. In this case, the info parameter stores a quad-tuple of extra
information that can be used to correctly initialize the embedded ElementaryFile predicate
without losing information.

Listing 3.8: A more complete definition of the File and ElementaryFile predicates that supports downcasting.

1 public abstract class File {
2 /*@ predicate File(short theFileID , boolean activeState ,
3 any info) =
4 this.fileID |-> theFileID &*&
5 this.active |-> activeState &*& info == unit; @*/
6
7 ...
8 }
9

10 public final class ElementaryFile extends File {
11 /*@ predicate File(short theFileID , boolean activeState ,
12 quad <DedicatedFile , byte[], short , any > info) =
13 ElementaryFile(theFileID , ?dedFile , ?dta , activeState ,
14 ?sz , ?ifo) &*& info == quad(dedFile , dta , sz, ifo); @*/
15 /*@ predicate ElementaryFile(short fileID ,
16 DedicatedFile parentFile , byte[] data , boolean activeState ,
17 short size , any info) =
18 this.File(File.class)(fileID , activeState , _) &*&
19 this.parentFile |-> parentFile &*&
20 this.data |-> data &*& data != null &*& this.size |-> size
21 &*& array_slice(data , 0, data.length , _) &*&
22 size >= 0 &*& size <= data.length &*& info == unit; @*/
23
24 ...
25 }

3.1.3 Evaluation

The main goal of this case study was to see how practical it is to use VeriFast to annotate a
Java Card applet that is more than a toy project. It gives us an idea of how much the annotation
overhead is, where we can improve the tool, and whether we can actually find bugs in existing
code using this approach.

Annotation Overhead. The more information the developer gives in the annotations about how
the applet should behave, the more VeriFast can prove about it. It is up to the developer to choose
whether he wants to use VeriFast as a tool to only detect certain kinds of errors (unexpected
exceptions and incorrect use of the API), or whether he wants to prove full functional correctness
of the applet. Both operation modes are supported by the tool. For the Java Card applets, we
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used the annotations to prove that the applet does not contain transaction errors, performs
no out of bounds operations on buffers, and never dereferences null pointers. While we have
used VeriFast to verify full functional correctness of sequential and fine-grained concurrent data
structures [29], specifying and verifying full functional correctness of JavaCard applets is future
work.

The eID applet and helper classes consist of 1,004 lines of Java Card code. In order to verify
the project, we added 802 lines of VeriFast annotations (or about four lines of annotations for
every five lines of code). The majority of these annotations were requires/ensures pairs (88
pairs, one for each method) and open and close statements (99 and 112 instances respectively).
Remarkably, only 8 predicates are defined throughout the entire code base, reflecting the design
decision of the authors of the applet to write most of it as one huge class file.

Another type of annotation overhead is the time required to actually write the annotations.
The verification of the eID applet was performed by a senior software engineer without prior
experience with the VeriFast tool, but with regular opportunities to consult VeriFast expert users
during the verification effort. We did not keep detailed effort logs. An estimate of the effort that
was required is 20 man-days. This includes time spent learning the VeriFast tool and the Java
Card API specifications.

Bugs and Other Problems. Because the eID applet in our case study is aimed at developers,
the authors did not spend a lot of time worrying about card tearing. This is demonstrated by the
fact that they did not use the Java Card transaction system at all. Using VeriFast, we found 25
locations where a card tear could cause the persistent memory to enter an inconsistent state.

Three locations were found where a null pointer dereference could occur. An additional three
class casting problems were found, where a variable holding a reference to the selected file (of
type File) was cast to an ElementaryFile instance. These bugs could be triggered by sending
messages with invalid file identifiers to the smart card. Seven potential out of bounds operations
were also found in the code. These bugs could be triggered by sending illegal messages to the
smart card.

VeriFast Strengths. Compared to other program verifiers that target Java Card [37, 19],
VeriFast has two advantages: speed and soundness. That is, VeriFast usually reports in only a
couple of seconds (usually less) whether the applet is correct or whether it contains a potential
bug. Secondly, if VeriFast deems a program to be correct, then that program is guaranteed to be
free from null pointer and array index out of bounds exceptions, and API usage and assertion
violations.

A feature that proved to be crucial in understanding failed verification attempts is VeriFast’s
symbolic debugger. The symbolic debugger can be used to diagnose verification errors by
inspecting the symbolic states encountered on the path to the error. For example, if the tool
reports an array indexing error, one can look at the symbolic states to find out why the index is
incorrect. This stands in stark contrast to most verification condition generation-based tools that
simply report an error, but do not provide any help to understand the cause of the error.
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3.2 HOMES: Verification of a Core Security Module in C

In this section we report on the verification of the C implementation of a Policy Enforcement
Point (PEP) with VeriFast. PEP is a program intended to run on Home Gateways. The case
study is provided by TID as part of the HOMES scenario described in D1.1 [4]. Since WP6
obtained the case study only in November 2010 and substantial development effort was required
to improve VeriFast’s support for the C language, the case study is still incomplete.

3.2.1 The PEP Case Study

The PEP program consists of approximately 1700 lines of C code. The program is designed to
run on embedded Linux-based home gateways and facilitates the application of security policies
in Network Admission Control scenarios. More specifically, for an authenticated network device,
PEP will receive an access policy from a Policy Decision Point. This policy is then put in place
by configuring the gateway’s network interfaces and firewall rules accordingly. This scenario is
extensively described in D1.1 [4].

Progress Time-line. The case study is released to WP6 in November 2010. An initial as-
sessment of the feasibility of applying VeriFast to PEP is carried out in the following month.
We conclude that verifying PEP is viable. Yet, VeriFast’s support for C needs to be extended
substantially to support C language constructs that were not available in VeriFast back then.
Work on extending VeriFast starts in March 2011, and extended case studies on PEP are
carried out in September and October 2011, followed by an attempt to verify the unmodified PEP
sources. This effort is still ongoing.

Case Study and Properties. The PEP implementation is split into 9 C source files and 8
C header files. In total, 53 functions are implemented. The core module of PEP is the file
pep.c, which comprises of 658 lines of code in 13 functions. Although PEP itself is relatively
small, it involves a range of Linux libraries that increase the complexity of the verification effort
substantially. These libraries are:

libpcap provides a network packet filtering mechanism
libdumbnet provides a simplified, portable interface to several low-level networking routines,

including creation and submission of network packages, and the configuration of network
interfaces and firewall rules

libssl provides Secure Socket Layer encryption and authentication of network traffic

For a thorough verification of the absence of runtime errors and for proving functional
correctness, the entire PEP code and the APIs of the above libraries would have to be annotated.
Since this was infeasible given the short period of time available for conducting the case study,
we focus on annotating pep.c and the PEP header files only. In order to integrate the libraries
we have created a single header file sys_includes.h that contains a 250-lines excerpt of the
libraries’ APIs and the Linux system header files.

An important goal of the exercise is to conduct the verification with as few modifications
to the sources as possible. This is important for communicating bugs reported by WP6 to the
developers of the PEP program, i.e. TID. Since verifying PEP for full functional correctness is
not feasible in the time available, we currently aim at proving that the PEP implementation does
not perform illegal operations such as dividing by zero or illegal memory access. PEP is also
multi-threaded. Thus, a second objective is to verify that the PEP implementation is free of data
races. In the following we present and discuss the necessary extensions to VeriFast and the
progress of our verification case study.
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3.2.2 VeriFast Extensions

The VeriFast distribution (c.f. D6.2 [48] and [30]) is accompanied by a tutorial document and
a range of examples that illustrate how C programs are annotated and verified. To enable the
verification of the PEP program, substantial development effort went into extending VeriFast so
as to support arrays and structs that are not dynamically allocated. In this section we outline
annotations for these programming constructs.

Arrays. The PEP program employs a lot of arrays as buffers for constructing strings and
network packets. In an initial attempts to verify PEP, we replaced these arrays with dynamically
allocated heap objects. This, however, implies modifications in the public header files of the
system libraries (e.g. for arrays inside structs), introduces a range of new program behavior that
is to be verified, and makes it impossible to compile, link and execute the code.

Support for global and local arrays with array initializers, and an extended range of C syntax for
accessing arrays, including the typical array[position], was implemented in VeriFast. In order
to access dynamically allocated chunks in a similar way as static arrays, we provide conversion
lemmas such as chars_to_chararray and chararray_to_chars. Interactions between static
and dynamic arrays are illustrated in Lst. 3.9. The listing presents an annotated program that
initializes all elements of a dynamically allocated array with the content of one element taken
from a global static array. To verify the program, a number of lemma definitions, amounting to
a total of 27 lines of annotations are required. These lemmas are available in the examples
section of the recent VeriFast distribution.

Listing 3.9: C Arrays in VeriFast.

1 static char src [20] = "Hello ,␣world\n";
2
3 int main (int argc , char **argv) //@ : main_full(carrays)
4 //@ requires module(carrays , true);
5 //@ ensures result == 0;
6 { //@ open_module ();
7 char *dst; int i = 0;
8 dst = malloc (42); if (dst == 0) { abort (); }
9 //@ chars_to_chararray(dst , 42);

10 while (i < 42)
11 /*@ invariant 0 <= i && i <= 42
12 &*& array <char >(src , 20, sizeof(char), character , ?srcelems)
13 &*& array <char >(dst , 42, sizeof(char), character , ?ndstelems)
14 &*& forall_eq(take(i, ndstelems), nth(0, srcelems )) == true; @*/
15 { dst[i] = src [0];
16 //@ take_plus_one(i, update(i, nth(0, srcelems), ndstelems ));
17 i++; }
18 //@ chararray_to_chars(dst);
19 free (dst);
20 //@ close_module ();
21 //@ leak module(carrays , _);
22 return (0); }

Structs. Similar to arrays, PEP and the system libraries make use of static structs. Further
features previously unsupported by VeriFast include structs fields of type struct or array, and
struct initializers. In initial feasibility studies on PEP, we replaced static structs by their dynamically
allocated equivalents. Struct fields inside these structs were replaced by pointers and a dedicated
function would allocate and initialize all variables as necessary. Further extensive modifications
were necessary to avoid the use of memset() and memcpy() to modify the content of structs.
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Again, the resulting code would not execute correctly due to incompatibilities with library functions.
In consequence, full support for structs has been added to VeriFast, enabling a range of case
studies beyond the scope of PEP.

3.2.3 Verification Progress

As outlined in the previous section, a number of feasibility studies was conducted to familiarize
with the case study and its requirements. In this process, modified versions of PEP’s functions
were annotated and verified. The results of these case studies yield no reliable bug reports as
the analyzed versions of the PEP program do neither comply with the system libraries’ APIs nor
with the PEP-internal APIs. TID, the stakeholder of the case study, was requested to supply
WP6 with test cases (e.g. unit tests for the core functions). These may have enabled us to re-
engineer a PEP program that does correctly implement the PEP functionality without employing
programming constructs unsupported by VeriFast. Unfortunately, the program is reported not to
be formally tested. Subsequently, VeriFast is extended to enable us to verify a largely unmodified
version of the PEP program.

Ongoing Verification Effort. Currently, 8 (out of 13) functions of PEP’s core file, pep.c, are
annotated and verified with no or only minor modifications to the actual code. In particular, we
removed calls to printf()1 since functions with a variable number of arguments are currently
unsupported. We further use a custom script to “preprocess” the source file so as to add some
VeriFast-specific #include-directives and to perform macro expansion2. Importantly, we still use
incomplete stub-annotations for some internal APIs and for the system libraries.

Until now, a total of 450 lines of annotations is produced for the final case study. This does
not include generic lemmas and predicates. We conjecture the annotation overhead to be slightly
below or on par with the number of lines of code in the PEP program. The verification of PEP is
being conducted by a researcher with a background in specification techniques and software
verification, but with no specific experience related to VeriFast and separation logic. The time
invested in the verification project, including time to familiarize with the verification tool, conduct
feasibility studies, extend the tool and carry out the current experiments, amounts to roughly 5
person months. The time dedicated exclusively to the ongoing study is less than one person
month.

Verification Results. Since the PEP program is production code that implements a security
module which has potentially been deployed with thousands of home gateways, our expectations
to find critical bugs were relatively low.

Nevertheless, even though our verification effort is not yet finished, we already discovered 5
NULL-pointer bugs. Of those, 4 are the results of the unguarded use of malloc() while the 5th is
due to an unchecked dereference of a pointer returned by fopen(). If it can be guaranteed that
the home gateways PEP is deployed on, never run out of memory, the bugs related to malloc()
may never be triggered. The fopen()-error, however, can cause the program to crash in practice,
i.e. when the configuration file is not present or not readable.

In addition, we have a strong indication for a race condition on the global variable brmac.
This potential bug was first discovered through manual inspection in the initial feasibility studies.
It cannot be confirmed yet because the annotations of the code are still incomplete.

1In PEP, printf() is only used to output status messages and debug information.
2Support for preprocessor directives has been added to VeriFast after work on the final case study started.
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3.3 Automatic Annotation Inference

VeriFast heavily relies on hand-crafted annotations that contribute to the tool’s efficiency. Yet, the
need for annotations may also render the VeriFast cumbersome to use. This issue has previously
been criticized by the stakeholders of the POPS and HOMES case studies. To quantify the
annotations needed, we present statistics on example programs from the VeriFast distribution in
Tab. 3.1. The second (LOC) and third (LOAnn) columns denote the lines of C/Java code and
annotations in the examples. The numbers given in parentheses correspond to the number of
open and close statements, respectively, which will be further explained in Sec. 3.3.1. The fourth
(LoAnn/LOC) column shows the ratio of annotation overhead. In this section we investigate
three techniques to mechanize the generation of annotations. An extended abstract of our work
has been published in [51] (c.f. App. B).

Table 3.1: Statistics on VeriFast’s annotation overhead

LOC LOAnn LoAnn/LOC
stack (C) 88 198 (18/16) 2.3
sorted binary tree (C) 125 267 (16/23) 2.1
bank example program (C) 405 127 (10/22) 0.31
chat server (C) 130 114 (20/26) 0.88
chat server (Java) 138 144 (19/28) 1.0
game server (Java) 318 225 (47/63) 0.71

We distinguish two layers in VeriFast: (i) VeriFast’s core, which requires annotations to
perform verification. This core must be as small and maintainable, as the verification’s soundness
relies on it. (ii) The automation layer generates a substantial portion of annotations to be fed
to VeriFast’s core. The aim of this approach is to maximize robustness such that we can
freely experiment with different automation techniques without having to worry about introducing
unsound elements – the annotations are fully verified by the core.

To illustrate annotations and annotation inference, we introduce a running example a fully
annotated list-copying function in Lst. 3.11. The copy function comprises of 12 C statements
and 31 annotation statements, not counting lemmas that can be shared by multiple function
contracts. We now discuss how some of these annotations can be generated automatically.

We focus on verifying memory safety. Thus, we employ two simple predicates Node and
LSeg (Lst. 3.10) that describe the structure of the list. The code in Lst. 3.11 makes use of a
function new() that produces a new Node(result, 0) and always succeeds. The function is
defined in terms of malloc and aborts on allocation failure. NoCycle, Distinct, AppendLSeg
and AppendNode are lemmas whose contracts are shown in Figure 3.12.

Listing 3.10: Node and LSeg predicates

1 predicate Node(struct list* P, struct list* Q) =
2 P != 0 &*& malloc_block_list(P) &*& P->next |-> Q &*& P->value |-> ?v;
3
4 predicate LSeg(struct list* P, struct list* Q) =
5 P == Q ? emp : Node(P, ?R) &*& LSeg(R, Q);

3.3.1 Auto-Open and Auto-Close

As can be seen, a lot of annotations perform opening and closing predicates. Our statistics in
Tab. 3.1 indicate the situation is similar for other programs, rendering open and close interesting
candidates for automation. Whenever the execution of a statement fails, the verifier could inspect
the current execution state and attempt opening or closing predicates to identify the right heap
fragments to be produced.

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 25/98



Listing 3.11: Copying linked lists

1 struct list* copy(struct list* xs)
2 //@ requires LSeg(xs, 0);
3 //@ ensures LSeg(xs, 0) &*& LSeg(result , 0);
4 {
5 if ( xs == 0 ) {
6 //@ close LSeg(0, 0); // a
7 return 0; }
8 else {
9 struct list* ys = new();

10 //@ open LSeg(xs, 0);
11 //@ open Node(xs, _); // a
12 //@ open Node(ys, 0); // a
13 ys ->value = xs->value;
14 struct list *p = xs->next , *q = ys;
15 //@ close Node(ys, 0); // a
16 //@ close Node(xs, p); // a
17 //@ NoCycle(xs , p);
18 //@ close LSeg(p, p); // a
19 //@ close LSeg(xs, p); // a
20 //@ close LSeg(ys, q); // a
21 while ( p != 0 )
22 //@ invariant LSeg(xs,p) &*& LSeg(p,0) &*& LSeg(ys,q) &*& Node(q,0);
23 {
24 //@ struct list *oldp = p, *oldq = q;
25 struct list* next = new();
26 //@ Distinct(q, next);
27 //@ open Node(q, 0); // a
28 q->next = next; q = q->next;
29 //@ close Node(oldq , q); // a
30 //@ open LSeg(p, 0);
31 //@ assert Node(p, ?pn);
32 //@ NoCycle(p, pn);
33 //@ open Node(p, _); // a
34 //@ open Node(q, 0); // a
35 q->value = p->value; p = p->next;
36 //@ close Node(q, 0); // a
37 //@ close Node(oldp , p); // a
38 //@ AppendLSeg(xs , oldp); AppendNode(ys, oldq);
39 }
40 //@ open LSeg(p, 0); // a
41 //@ NotNull(q); // b
42 //@ close LSeg(0, 0); // a
43 //@ AppendLSeg(ys , q);
44 //@ open LSeg(0, 0); // a
45 return ys;
46 }
47 }

Let us assume that we are reading from the next field of a variable x, which requires a heap
fragment matching x->next |-> v. However, only Node(x, y) is available. Without automation,
verification would fail, but instead, the verifier could try opening Node(x, y) and find out that this
results in the required heap fragment. Of course, given that predicates can be defined recursively,
this “search” may not terminate. Therefore, heuristics are needed to guide automation.

We implemented automatic opening and closing of predicates in VeriFast: VeriFast keeps a
directed graph whose nodes are predicates and whose arcs indicate how predicates are related
to each other. For example, there exists an arc from LSeg to Node, meaning that opening an
LSeg yields a Node. However, this depends on whether the LSeg does represent the empty list.
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Listing 3.12: Lemmas

1 lemma void NoCycle(struct list* P, struct list* Q)
2 requires Node(P, Q) &*& LSeg(Q, 0);
3 ensures Node(P, Q) &*& LSeg(Q, 0) &*& P != Q;
4 lemma void Distinct(struct list* P, struct list* Q)
5 requires Node(P, ?PN) &*& Node(Q, ?QN);
6 ensures Node(P, PN) &*& Node(Q, QN) &*& P != Q;
7 lemma void AppendLSeg(struct list* P, struct list* Q)
8 requires LSeg(P, Q) &*& Node(Q, ?R) &*& Q != R &*& LSeg(R, 0);
9 ensures LSeg(P, R) &*& LSeg(R, 0);

10 lemma void AppendNode(struct list* P, struct list* Q)
11 requires LSeg(P, Q) &*& Node(Q, ?R) &*& Node(R, ?S);
12 ensures LSeg(P, R) &*& Node(R, S);

To express this dependency, we label the arcs with the required conditions. The same conditions
can be used to encode the relationships between the arguments of both predicates. For the
predicate definitions from Lst. 3.10, the graph would contain the following:

a 6= b
a = p p = x

LSeg(a, b) −→ Node(p, q) −→ x→ next 7→ y

During verification, some operation may require the presence of a Node(p, q) heap fragment.
If this is missing, two possible solutions are considered: we can either attempt to perform an
auto-open on an LSeg(p, b) for which we know that p != b, or try to close Node(p, q) if there
happens to be a p->next |-> ? on the current heap. This yields a considerable decrease
of annotations in Lst. 3.11: each open or close indicated by // a (17 out of 31) is inferred
automatically by VeriFast.

3.3.2 Autolemmas

Lemmas only have to be defined once. Thus, automatic generation would only yield a limited
reduction in annotations. Yet, lemma application occurs multiple times, which is where our
focus lies. Currently, we have implemented one very specific and admittedly somewhat limited
way to automate lemma application. While automatic opening and closing of predicates is
only done when the need arises, VeriFast will try to apply all lemmas regarding a predicate P
each time P is produced, in an attempt to accumulate as much extra information as possible.
This immediately gives rise to limitations with respect to efficiency and potentially making the
execution state unusable. The latter happens, for example, if the AppendLSeg lemma were
applied indiscriminately, Nodes would be absorbed by LSegs, effectively throwing away potentially
crucial information (in this case, we “forget” that the list segment has length 1.) To prevent this,
autolemmas are not allowed to modify the symbolic state, but instead may only extend it with
extra information. To counteract performance issues, lemmas need to be explicitly declared to
qualify for automatic application, and they may only depend on one heap fragment.

In the case of our example, only one lemma qualifies for automation: NotNull. Thus, every
time a Node(p, q) heap fragment is added to the heap, VeriFast will immediately infer that
p != 0. Since we only needed to apply this lemma once, we can only decrease the number of
annotations by the line indicated with // b in Lst. 3.11.

3.3.3 Automatic Shape Analysis

Our third approach for reducing annotations focuses solely on shape analysis [17] and has
the potential to automatically generate all necessary annotations for a number of programming
constructs, including postcondition and loop invariants. To apply shape analysis, we need to
determine the initial program state. We achieve this by requiring the verification engineer to
provide preconditions, effectively putting barriers on how far a bug’s influence can reach.
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Table 3.2: Automatic shape analysis: finding a fixed point

without abstraction with abstraction
Node(p’, p) &*& LSeg(p, 0) LSeg(p’, p) &*& LSeg(p, 0)
Node(p’, p1) &*& Node(p1, p)
&*& LSeg(p, 0)

LSeg(p’, p) &*& LSeg(p, 0)

Table 3.3: Reduction of annotation overhead

C-code #code A B C D lemma A B C
length 10 12 9 9 1 Distinct 9 7 7
sum 11 11 7 7 1 NotNull 7 6 6
destroy 9 6 4 4 1 AppendNode 19 16 16
copy 23 32 15 14 1 AppendLSeg 27 19 18
reverse 12 9 5 5 1 AppendNil 9 7 6
drop_last 28 28 13 13 1 NoCycle 11 10 9
prepend 7 5 3 3 1
append 13 20 11 11 1

#code A B C D
total 113 205 132 128 8

Our implementation of shape analysis is based on [17]. The idea is very similar to what has
been explained earlier in Sec. 3.3.1: during symbolic execution of a function, it will open and
close the predicates as necessary to satisfy the precondition of the operations it encounters.
However, the analysis has a more thorough understanding of the lemmas. That is, it will know in
what circumstances lemmas need to be applied. A good example of this is the inference of the
loop invariant where shape analysis uses the lemmas to abstract the state, which is necessary
to prevent the symbolic heap from growing indefinitely while looking for a fixpoint. Consider the
following pseudocode: p′ := p;while p 6= 0 do p := p→next end. Initially, the symbolic heap
contains LSeg(p, 0). To enter the loop, p needs to be non-null, hence it is a non-empty list and
can be opened up to Node(p’, p1) &*& LSeg(p1, 0). During the next iteration, p1 can be null
or non-null. Thus, every iteration adds the possibility of an extra node. This way, we’ll never find
a fixed point. Performing abstraction will fold nodes back into LSegs. The difference is shown in
Tab. 3.2. One might wonder why the abstraction doesn’t also merge both LSegs into a single
LSeg. The reason for this is that the local variable p points to the start of the second LSeg: folding
would throw away information deemed important.

For our purposes, the algorithms from [17] have been extended so as to also generate
annotations to facilitate integration with VeriFast. To prove properties other than memory safety,
further annotations may be added. In our example, shape analysis is able to deduce all open
and close annotations, the lemma applications, the loop invariant and the postcondition. Hence,
the number of necessary annotations for Lst. 3.11 is reduced to 1, namely the precondition.

3.3.4 Evaluation

In order to get a better idea of by how much we managed to decrease the number of annotations,
we wrote a number of list manipulation functions. There are four versions of the code: (A) A
version with all annotations present. (B) An adaptation of (A) where we enabled auto-open and
auto-close. (C) A version where we take (B) and make NotNull an autolemma (Sec. 3.3.2).
(D) Finally, a minimal version with only the required annotations to make our shape analysis
(Sec. 3.3.3) able to verify the code. Tab. 3.3 shows how the annotation line counts relate.
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4. On-Device Verification

In this chapter we report on the on-device information protection techniques developed by WP6,
but not yet implemented in the prototypes. First we estimate the costs of the implementations of
the global policy model (Section 4.1) and the non-interference model (Section 4.2) in the POPS
case study. Finally, we discuss the application of SxC to the HOMES case study (Section 4.3).

4.1 Toward Implementing the Global Policy Model for Smart-Cards

In the deliverables D6.3 (Chapter 5) and D6.4 (Chapter 4), we described the global policy model.
The purpose of this section is to give some details on its practicable implementation for JavaCard
smart-cards, especially regarding content and size of the required meta-data to be embedded in
CAP files (Section 4.1.1) and those persistently stored on-device (Section 4.1.2). Evaluation of
memory consumption on the POPS scenario is described in Section 4.1.3.

4.1.1 Off-Device Computation and Embedding of Methods Footprints in
CAP Files

Figure 4.1 gives an overview of how methods footprints (Definitions 5.4.2 and 5.5.1 of the
deliverable D6.3) can be embedded in their related CAP file thanks to a Custom Component.
The process is completely analog to the one implemented for the transitive control flow model
(c.f.deliverable D6.5): an off-device tool analyzes the content of an input CAP file according
to an input policy written in a DSL language, and produces a new CAP file with the same
application content plus a Custom Component containing methods footprints, intermediate
footprints and footprints of external methods referenced (invoked, overridden, implemented)
needed for on-device verification (Section 5.6.2 of the deliverable D6.3).

.cap

.cap*.class
Conversion

convert JavaCard

Compilation
javac

*.java

Footprints computation
and embedding

Global policy
automaton

External
footprints

Figure 4.1: Schema of the off-device process for embedding methods footprints in a CAP file.

A Custom Component for Embedded Methods Footprints

The Global Policy Custom Component (GPCC) to be embedded in CAP files is a Custom
Component of the CAP file format (c.f.JCVM 2.x specifications) with the data structures displayed
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in Figure 4.2. The fields of those structures have the following meaning.
The global_policy_component structure describes a GPCC:

• tag contains the tag value (between 128 and 255 inclusive, as described in the ISO 7816-5)
which permits to identify the GPCC;

• size indicated the number of bytes in the global_policy_component structure, excluding
the tag and size items. The value of the size field must be greater than 0;

• external_footprints_size represents the size in bytes of the external_footprints
field;

• external_footprints contains all the believed footprints of external methods (i.e.defined
in other packages) directly referenced (i.e.invoked, overridden or implemented) in this
package (Section 5.6.2 of the deliverable D6.3);

• class_footprints_size represents the size in bytes of the class_footprints field;

• class_footprints contains a internal_class_footprint entry for each class and each
interface defined in this package.

The external_package_footprint structure describes the methods footprints coming from
an imported package and explicitly referenced (i.e.invoked, overridden or implemented) in this
package:

• package_aid contains the package AID that permits to identify the package from which
external footprints are coming from;

• class_footprints_size contains the size in bytes of the class_footprints field;

• class_footprints contains an external_class_footprint entry for each class and each
interface of this package containing a method referenced in the current package.

The external_class_footprint structure describes the methods footprints of a class or an
interface defined in an imported package:

• class_token represents the class token of the current class (or interface); its value cannot
be 0xFF as it must correspond to a class or to an interface visible outside of the package
in which it is defined;

• method_footprints_size contains the size in bytes of the method_footprints field;

• method_footprints maps a believed footprint to each method of the current external class
(or interface) that is referenced in this package.

The external_method_footprint structure describes the footprint of an external method
referenced in this package:

• method_token represents the static/virtual/interface method token of this method;

• complete_footprint contains the binary encoded footprint of this method (Section 5.6.2
of the deliverable D6.3)1.

The internal_class_footprint structure describes the methods footprints of a class or an
interface defined in this package:
1Footprints of external methods must be the ones used to compute footprints of methods defined in this package.
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global_policy_component {
u1 tag;
u2 size;
u2 external_footprints_size;
external_package_footprint external_footprints[];
u2 class_footprints_size;
internal_class_footprint class_footprints[];

}

external_package_footprint {
struct {

u1 length;
u1 value[length];

} package_aid;
u2 class_footprints_size;
external_class_footprint class_footprints[];

}

external_class_footprint {
u1 class_token;
u2 method_footprints_size;
external_method_footprint method_footprints[];

}

external_method_footprint {
u1 method_token;
footprint_t complete_footprint;

}

internal_class_footprint {
u2 classref;
u1 class_token;
u2 method_footprints_size;
internal_method_footprint method_footprints[];

}

internal_method_footprint {
u1 bitfield;
u1 method_token; /* present according to bitfield */
u2 method_offset; /* present according to bitfield */
footprint_t complete_footprint;
u2 intermediate_footprints_size;
intermediate_footprint intermediate_footprints[];

}

intermediate_footprint {
u2 pc;
footprint_t footprint;

}

Figure 4.2: Data structures of the Global Policy Custom component (GPCC), a custom component of the CAP file
format for the implementation of the global policy model on JavaCard smart cards.
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• classref contains the location (i.e.the offset) in the Class Component (c.f.JCVM speci-
fications) of the info structure corresponding to a class (or an interface) defined in this
package;

• class_token represents the class token of the current class (or interface), or 0xFF if the
current class (or interface) has no token assigned;

• method_footprints_size contains the number of entries in the method_footprints field;

• method_footprints maps to each method of the current class (or interface) its footprint.

The internal_method_footprint structure describes the footprint of a method defined in
this package:

• bitfield is a mask of modifiers describing the current method:

Mask 0x80 0x40 0x20
Value 0x80 is visible 0x40 is implemented 0x20 is static

0x00 is not visible 0x00 is abstract 0x00 is not static

• method_token represents the static/virtual/interface method token of this method; this item
is present iff the method is visible, according to bitfield;

• method_offset represents a byte offset into the info item of the Method Component
(c.f.JCVM specifications) if the method is implemented (i.e.not an abstract method or a
method definition in an interface), according to bitfield;

• complete_footprint contains the binary encoded footprint of the current method;

• intermediate_footprints_size contains the size in bytes of the
intermediate_footprints field;

• intermediate_footprints contains all the intermediate footprints (i.e.proof annotations
described in Section 5.6.2 of the D6.3) of the current method used to compute the complete
footprint of this method, but also to verify its complete footprint on-device.

The intermediate_footprint structure describes an intermediate footprint of a method,
that is an incomplete footprint of a method attached to an instruction of the method targeted by
a jump (instruction following an invoke, a conditional block, . . . ):

• pc is the offset of the instruction in the bytecode of the method to which this intermediate
footprint is attached;

• footprint is the binary encoded footprint.

The structure footprint_t is a flat bit array which contains a binary encoded footprint
(Section 5.6.2 of the deliverable D6.3). Its size depends on the number of states in the automaton
describing the set of forbidden sequences of method calls.
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4.1.2 On-Device Verification and Storage of Methods Footprints

The on-device enforcement of a global policy requires to verify at loading-time that all methods
footprints of each incoming package (application, library) are correct with respect to their by-
tecode, and respect the global policy. In order not to be bypassed, the verification process
must occur before the package is concretely installed and used by other packages installed on
the card, as depicted on Figure 4.3. Methods footprints of successfully verified and installed
packages are stored persistently into dedicated repositories on-device across installations, and
cleaned upon successful uninstallations. Integration on-device is rigorously similar to the one
implemented for the transitive control flow model described in the deliverable D6.5.

repositories

OK

.cap

Loading
OK

Rollback

KOKO

methods footprints

Verification of Update

repositories

Removed

Linking Runnable

Removable
Update

Figure 4.3: Schema of the on-device process triggered at loading-time of a new CAP file for the global policy model.

The structure of on-device repositories of methods footprints, given in Appendix D, is almost
identical to the structure of the GPCC to simplify on-device treatments. It is actually simpler as no
external_* structures are needed, and intermediate footprints should not be stored on-device
after successful verification and installation.

4.1.3 Evaluation on the POPS Case Study

In this section, we estimate the size of the GPCC to be embedded in the POPS scenario
packages as well as the size of repositories managed on-device at each step of the deployment
scenario.

The size of the GPCC and the size of repositories depend on the size of the footprint_t
structure, which depends on the number of states of the automaton that defines the set of
forbidden sequences (Section 5.3.1 in the deliverable D6.3). Let n be the number of states of
this automaton. So, according to the definition of a binary encoded footprint (Section 5.6.2 of
the deliverable D6.3), the size of footprint_t is N = dn(n−1)8 e bytes.

The GPCC Instances

Since the size of a GPCC depends on several variables, we proceed per data structure to
compute the size of the GPCC for each package, according to the details of their content given
in Appendix C.

The GPCC of the newepurse.cap Package. This package does not import any package2, so
there is no external footprint in its GPCC. The size of the GPCC structure instance, exclu-
ding the class_footprints array, is thus 1 + 2 + 2 + 2 = 7 bytes. This package contains 3
2Import and use of JavaCard and GlobalPlatform APIs are not taken into account as they are considered safe and no
footprint is attached to their methods.
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classes and 2 interfaces. The sum of all internal_class_footprint instances sizes, excluding
the method_footprints array, is thus 5 ∗ (2 + 1 + 2) = 25 bytes. This package contains 20
methods: 17 have bytecode instructions (i.e.are implemented), and 14 are visible (i.e.have
a token set). The sum of all internal_method_footprint instances sizes, excluding the
intermediate_footprints array, is thus 20+14+2∗17+20N +20∗2 = 108+20N bytes. In this
package, the total count of instructions targeted by a jump in the 17 implemented methods is 157,
so 157 intermediate footprints appear in the GPCC. The sum of all intermediate_footprint
instances sizes is thus 157 ∗ (2 + N) = 314 + 157N bytes.

The total size of the GPCC is the sum of all instantiated structures: (314 + 157N) + (108 +
20N) + 25 + 7 = 454 + 177N bytes. The following table gives some instances of the GPCC size
in bytes for the newepurse.cap package when n (and thus N ) varies:

n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 631 808 985 1162 1516 1693 2047 2578

The GPCC of the newjticket.cap Package. This package imports only the newepurse.cap
package, and uses only 1 method of this package. So there is only one external method’s footprint
in its GPCC, and there is exactly one instance of each of the external_* structures. Assuming
the AID of the newepurse.cap package is made of 16 bytes (the maximal possible size), the size
of the external_package_footprint, excluding the class_footprints array, is (1+16)+2 = 19
bytes. The size of the external_class_footprint, including the method_footprints array
which size is 1 + N , is 3 + (1 + N) = 4 + N bytes. So, the size of the GPCC, excluding the
class_footprints array, is 1 + 2 + 2 + 2 + (19 + 4 + N) = 30 + N bytes. This package contains
only 1 class. The size of the corresponding internal_class_footprint structure, excluding the
method_footprints array, is thus 2 + 1 + 2 = 5 bytes. This package contains 7 methods: 7 are
implemented, and 3 are visible. The sum of all internal_method_footprint instances sizes,
excluding the intermediate_footprints array, is thus 7 + 3 + 2 ∗ 7 + 7N + 7 ∗ 2 = 38 + 7N
bytes. In this package, the total count of instructions targeted by a jump in the 7 implemented
methods of the package is 53, so 53 intermediate footprints appear in the GPCC. The sum of all
intermediate_footprint instances sizes is thus 53 ∗ (2 + N) = 106 + 53N bytes.

The total size of the GPCC is the sum of all instantiated structures: (106 + 53N) + (38 +
7N) + 5 + (30 + N) = 179 + 61N bytes. The following table gives some instances of the GPCC
size in bytes for the newjticket.cap package when n (and thus N ) varies:

n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 240 301 362 423 545 606 728 911

The GPCC of the neweidapplet.cap Package. This package imports only the newepurse.cap
package, and uses only 1 method of this package. So there is only one external method’s footprint
in its GPCC, and there is exactly one instance of each of the external_* structures. Assuming
the AID of the newepurse.cap package is made of 16 bytes (this is the maximal possible size
for an AID), the size of the external_package_footprint, excluding the class_footprints
array, is (1 + 16) + 2 = 19 bytes. The size of the external_class_footprint, including the
method_footprints array which size is 1 + N , is 3 + (1 + N) = 4 + N bytes. So, the size of the
GPCC, excluding the class_footprints array, is 1 + 2 + 2 + 2 + (19 + 4 + N) = 30 + N bytes.
This package contains 6 classes and 1 interface. The sum of all internal_class_footprint
instances sizes, excluding the method_footprints array, is thus 7 ∗ (2 + 1 + 2) = 35 bytes.
This package contains 82 methods: 81 are implemented, and 38 are visible. The sum of all
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internal_method_footprint instances sizes, excluding the intermediate_footprints array,
is thus 82 + 38 + 2 ∗ 81 + 82N + 82 ∗ 2 = 446 + 82N bytes. In this package, the total count of
instructions targeted by a jump in the 81 implemented methods of the package is 733, so 733
intermediate footprints appear in the GPCC. The sum of all intermediate_footprint instances
sizes is thus 733 ∗ (2 + N) = 1466 + 733N bytes.

The total size of the GPCC is the sum of all instantiated structures: (1466 + 733N) + (446 +
82N) + 35 + (30 + N) = 1977 + 816N bytes. The following table gives some instances of the
GPCC size in bytes for the neweidapplet.cap package when n (and thus N ) varies:

n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 2793 3609 4425 5241 6873 7689 9321 11769

The GPCC of the newmypackage.cap Package. This package imports the newepurse.cap
package and the neweidapplet.cap package. Two methods defined in the same interface
of the newepurse.cap package are invoked, while only one method in one interface of the
neweidapplet.cap package is invoked. The GPCC of the newmypackage.cap package thus
contains 2 instances of the external_package_footprint structure, plus 2 instances of the
external_class_footprint structure, and three instances of the external_method_footprint
structure. Assuming the two AIDs of the imported packages are each made of 16 bytes (this is
the maximal possible size for an AID), the total size of the two external_package_footprint
instances, excluding their class_footprints array, is 2 ∗ ((1 + 16) + 2) = 38 bytes. The total
size of the two external_class_footprint instances, excluding their method_footprints array,
is 2 ∗ (1 + 2) = 6 bytes. The total size of the three external_method_footprint instances is
3 ∗ (1 + N) = 3 + 3N bytes. So, the size of the GPCC, excluding the class_footprints array, is
1+2+2+2+38+6+(3+3N) = 54+3N bytes. This package contains 2 classes and 1 interface.
The sum of all internal_class_footprint instances sizes, excluding the method_footprints
array, is thus 3 ∗ (2 + 1 + 2) = 15 bytes. This package contains 17 methods: 16 are implemented,
and 6 are visible. The sum of all internal_method_footprint instances sizes, excluding the
intermediate_footprints array, is thus 17 + 6 + 2 ∗ 16 + 17N + 17 ∗ 2 = 89 + 17N bytes. In
this package, the total count of instructions targeted by a jump in the 16 implemented methods
of the package is 187, so 187 intermediate footprints appear in the GPCC. The sum of all
intermediate_footprint instances sizes is thus 187 ∗ (2 + N) = 374 + 187N bytes.

The total size of the GPCC is the sum of all instantiated structures: (374 + 187N) + (89 +
17N) + 15 + (54 + 3N) = 532 + 207N bytes. The following table gives some instances of the
GPCC size in bytes for the neweidapplet.cap package when n (and thus N ) varies:

n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 739 946 1153 1360 1774 1981 2395 3016

On-Device Repositories

The size of on-device repositories is given according to the deployment scenario, after the
installation of the each new package.

After the Installation of the newepurse.cap Package. There exists a single instance of
the ondevice_footprint_repositories structure which has a size of 1 byte, excluding its
package_footprint array. There exists only one instance of ondevice_package_footprint
corresponding to the newepurse.cap package, and its size, excluding the class_footprints
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array, is 3 bytes. The newepurse.cap package contains 5 classes/interfaces, so the sum of
the five ondevice_class_footprint instances sizes, excluding the intermediate_footprints
array, is thus 5 ∗ (2 + 1 + 2) = 35 bytes. The newepurse.cap package contains 20 methods:
17 implemented and 14 visible. So the sum of all corresponding ondevice_method_footprint
instances sizes is 20 + 14 + 2 ∗ 17 + 20N = 68 + 20N bytes. The total size of the single instance
of ondevice_footprint_repositories structure after the installation of the newepurse.cap pa-
ckage is the sum of all the aforementioned structures: 1 + 3 + 35 + (68 + 20N) = 107 + 20N
bytes. The following table gives some instances of the size in bytes of on-device repositories
after only the newepurse.cap package is installed when n (and thus N ) varies:

n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 127 147 167 187 227 247 287 347

After the Installation of the newepurse.cap and the newjticket.cap Packages. The single
instance of ondevice_footprint_repositories structure, excluding the package_footprint
array, has a size of 1 byte. There are two instances of the ondevice_package_footprint
structure, each instance corresponding to an installed package. The sum of the sizes of
these two instances, excluding their class_footprints arrays, is 2 ∗ 3 = 6 bytes. There are 6
classes/interfaces installed (5 for newepurse.cap, 1 for newjticket.cap), so the sum of the four
ondevice_class_footprint instances sizes, excluding their methods_footprints arrays, is thus
6∗ (2+1+2) = 30 bytes. There are 27 methods installed: 24 implemented and 17 visible. So the
sum of all corresponding ondevice_method_footprint instances sizes is 27+17+2∗24+27N =
92 + 27N bytes. The total size of the single instance of ondevice_footprint_repositories
structure after the installation of these packages is the sum of all the aforementioned structures:
1+6+30+(92+27N) = 129+27N bytes. The following table gives some instances of the size in
bytes of on-device repositories after installation of the newepurse.cap and the newjticket.cap
packages when n (and thus N ) varies:

n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 156 183 210 237 291 318 372 453

After the Installations of the First Three Packages. There exists a single instance of the
ondevice_footprint_repositories structure which has a size of 1 byte, if we exclude its
package_footprint array. There are three instances of the ondevice_package_footprint struc-
ture, each instance corresponding to an installed package. The sum of the sizes of these three
instances, excluding their class_footprints arrays, is 3∗3 = 9 bytes. There are 13 classes/inter-
faces installed (5 for newepurse.cap, 1 for newjticket.cap, 7 for neweidapplet.cap), so the sum
of the four ondevice_class_footprint instances sizes, excluding their methods_footprints
arrays, is thus 13 ∗ (2 + 1 + 2) = 65 bytes. There are 109 methods installed: 105 implemented
and 55 visible. So the sum of all corresponding ondevice_method_footprint instances sizes
is 109 + 55 + 2 ∗ 105 + 109N = 374 + 109N bytes. The total size of the single instance of
ondevice_footprint_repositories structure after the installation of these packages is the sum
of all the aforementioned structures: 1+9+65+(374+109N) = 449+109N bytes. The following
table gives some instances of the size in bytes of on-device repositories after installation of the
newepurse.cap, the newjticket.cap and the neweidapplet.cap packages when n (and thus
N ) varies:
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n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 558 667 776 885 1103 1212 1430 1757

At the End of the Scenario. The single instance of the ondevice_footprint_repositories
structure has a size of 1 byte, excluding its package_footprint array. There are four instances
of the ondevice_package_footprint structure, each instance corresponding to an installed
package. The sum of the sizes of these four instances, excluding their class_footprints
arrays, is 4 ∗ 3 = 12 bytes. There are 16 classes/interfaces installed (5 for newepurse.cap,
1 for newjticket.cap, 7 for neweidapplet.cap, 3 for newmypackage.cap), so the sum of the
four ondevice_class_footprint instances sizes, excluding their methods_footprints arrays,
is thus 16 ∗ (2 + 1 + 2) = 80 bytes. There are 126 methods installed: 121 implemented
and 61 visible. So the sum of all corresponding ondevice_method_footprint instances sizes
is 126 + 61 + 2 ∗ 121 + 126N = 555 + 126N bytes. The total size of the single instance of
ondevice_footprint_repositories structure after the installation of these packages is the sum
of all the aforementioned structures: 1 + 12 + 80 + (555 + 126N) = 648 + 126N bytes. The
following table gives some instances of the size in bytes of on-device repositories after installation
of the newepurse.cap, the newjticket.cap, the neweidapplet.cap and the newmypackage.cap
packages when n (and thus N ) varies:

n <4 4 5 6 7 8 9 10
N 1 2 3 4 6 7 9 12

Size 774 900 1026 1152 1404 1530 1782 2160

4.2 Toward Implementing the Non-Interference Model for Smart-
Cards

In the deliverables D6.3 (Chapter 6) and D6.4 (Chapter 5), we described the non-interference
model. The purpose of this section is to give some details on its practicable implementation for
JavaCard smart-cards, especially regarding content and size of the required meta-data to be
embedded in CAP files (Section 4.2.1) and those persistently stored on-device (Section 4.2.2).
Evaluation of memory consumption on the POPS scenario is described in Section 4.2.3.

4.2.1 Off-Device Computation and Embedding of Methods Signatures in
CAP Files

Figure 4.4 gives an overview of how methods signatures are computed by the STAN tool3 and how
they can be embedded in their related CAP file thanks to a Custom Component. The process
is quite different from the one described in Section 4.1.1 for the global policy model as it relies
on an the STAN tool that computes methods signatures from .class files rather than a .cap file.
However, using the methods signatures embedded in .class files by the STAN tool, an off-device
tool for the non-interference model can produce a new CAP file with the same application content
plus a Custom Component corresponding to methods signatures and intermediate signatures
needed for on-device checking of complete signatures.
3http://stan-project.gforge.inria.fr/index.php/Main/HomePage
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Figure 4.4: Schema of the off-device process for embedding methods signatures.

A Custom Component for Embedded Methods Signatures

The Non-Interference Custom Component (NICP) to be embedded in CAP files is a Custom
Component of the CAP file format (c.f.JCVM 2.x specifications) with the data structures displayed
in Figure 4.5. The fields of those structures have the following meaning.

The non_interference_component structure describes a NICP:

• tag contains the tag value (between 128 and 255 inclusive, as described in the ISO 7816-5)
which permits to identify the NICP;

• size indicated the number of bytes in the non_interference_component structure, exclu-
ding the tag and size items. The value of the size field must be greater than 0;

• external_signatures_size represents the size in bytes of the external_signatures
field;

• external_signatures contains all the signatures of external methods (i.e.defined in other
packages) directly referenced (i.e.invoked, overridden, implemented) in this package;

• class_signatures_size represents the size in bytes of the class_signatures field;

• class_signatures contains a internal_class_signature entry for each class and each
interface defined in this package.

The external_package_signature structure describes the methods signatures coming from
an imported package and explicitly referenced (i.e.invoked, overridden, implemented) in this
package:

• package_aid contains the package AID that permits to identify the package from which
external signatures are coming from;

• class_signatures_size contains the size in bytes of the class_signatures field;

• class_signatures contains an external_class_signature entry for each class and each
interface of this package containing a method referenced in the current package.

The external_class_signature structure describes the methods signatures of a class or
an interface:

• class_token represents the class token of the current class (or interface); its value cannot
be 0xFF as it must correspond to a class or to an interface visible outside of the package
in which it is defined;
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non_interference_component {
u1 tag;
u2 size;
u2 external_signatures_size;
external_package_signature external_signatures[];
u2 class_signatures_size;
internal_class_signature class_signatures[];

}

external_package_signature {
struct {

u1 length;
u1 value[length];

} package_aid;
u2 class_signatures_size;
external_class_signature class_signatures[];

}

external_class_signature {
u1 class_token;
u2 method_signatures_size;
external_method_signature method_signatures[];

}

external_method_signature {
u1 method_token;
signature_t complete_signature;

}

internal_class_signature {
u2 classref;
u1 class_token;
u2 method_signatures_size;
internal_method_signature method_signatures[];

}

internal_method_signature {
u1 bitfield;
u1 method_token; /* present according to bitfield */
u2 method_offset; /* present according to bitfield */
signature_t complete_signature;
u2 intermediate_signatures_size;
intermediate_signature intermediate_signatures[];

}

intermediate_signature {
u2 pc;
signature_t signature;

}

Figure 4.5: Data structures of the Non-Interference Custom component (NICP), a custom component of the CAP file
format for the implementation of the non-interference model on JavaCard smart cards.
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• method_signatures_size contains the size in bytes of the method_signatures field;

• method_signatures maps the signature to each method of the current class (or interface)
that is referenced (invoked, overridden, implemented) in this package.

The external_method_signature structure describes the signature of an external method
referenced in this package:

• method_token represents the static/virtual/interface method token of this method;

• complete_signature contains the expected signature of this method (Section 6.1.3 of the
deliverable D6.3)4.

The internal_class_signature structure describes the methods signatures of a class or
an interface defined in this package:

• classref contains the location (i.e.the offset) in the Class Component (c.f.JCVM speci-
fications) of the info structure corresponding to a class (or an interface) defined in this
package;

• class_token represents the class token of the current class (or interface), or 0xFF if the
current class (or interface) has no token assigned;

• method_signatures_size represents the number of entries in the method_signatures
field;

• method_signatures maps to each method of the current class (or interface) its signature.

The internal_method_signature structure describes the signature of a method defined in
this package:

• bitfield is mask of modifiers used with a method with the following meaning:

Mask 0x80 0x40 0x20
Value 0x80 is visible 0x40 is implemented 0x20 is static

0x00 is not visible 0x00 is abstract 0x00 is not static

• method_token represents the static/virtual/interface method token of this method; this item
is present iff the method is visible according to bitfield;

• method_offset represents a byte offset into the info item of the Method Component
(c.f.JCVM specifications) if the method is implemented (i.e.not an abstract method or a
method definition in an interface) according to bitfield;

• complete_signature contains binary encoded signature of the current method;

• intermediate_signatures_size contains the size in bytes of the
intermediate_signatures field;

• intermediate_signatures contains the intermediate signatures of the current method
used for on-device verification of the complete signature of the method.

4Signatures of external methods must be the ones used to compute signatures for this package.
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The intermediate_signature structure describes an intermediate signature of a method,
that is an incomplete signature of a method attached to an instruction of the method targeted by
a jump (instruction following an invoke, a conditional block, . . . ):

• pc the offset of the instruction in the bytecode of the method to which this intermediate
signature is attached;

• signature the binary encoded intermediate signature.

The structure signature_t is a two dimensional byte array which contains a binary encoded
signature (Section 6.1.3 of the deliverable D6.3). Its size is variable: it is at least 25 bytes, and it
grows in a polynomial way with the number of parameters of the analyzed method, but it does
not depend on the policy applied to class attributes (Section 6.1.2 of the deliverable D6.3).

4.2.2 On-Device Verification and Storage of Methods Signatures

The on-device enforcement of a non-interference policy requires to verify at loading-time that all
methods signatures of each incoming package (application, library) are correct with respect to
their bytecode and respect the secret flow policy between security domains. In order not to be
bypassed, the verification process must occur before the package is concretely installed and
used by other packages installed on the card, as depicted on Figure 4.6, in the exact same way
as the global policy model (Section 4.1.2).

repositories

OK

.cap

Loading
OK

Rollback

KOKO

methods signatures

Verification of Update

repositories

Removed

Linking Runnable

Removable
Update

Figure 4.6: Schema of the on-device process triggered at loading-time of a new CAP file for the non-interference
model.

The structure of on-device repositories of methods footprints, given in Appendix E, is almost
identical to the structure of the GPCC to simplify on-device treatments. It is actually simpler
as no external_* structures are needed, and intermediate signatures should not be stored
on-device after successful verification and installation.

4.2.3 Evaluation on the POPS Case Study

In this section, we estimate the size of the NICP to be embedded in the POPS scenario packages
as well as the size of repositories managed on-device at each step of the deployment scenario.

The size of the NICP depends on the size of the signature_t structure, which depends
on the number of parameters of each method. Let S be a function that maps to a number of
parameters of a method the size in bytes of its signature defined as:

S : N −→ N
p 7−→ 25 + p(10 + p)
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The NICP Instances

Since the size of a NICP depends on several variables, we proceed per data structure to
compute the size of the NICP for each package, according to the details of their content given in
Appendix C.

The NICP of the newepurse.cap Package. This package does not import any package5, so
there is no external signature in its NICP. The size of the NICP structure instance, exclu-
ding the class_signatures array, is thus 1 + 2 + 2 + 2 = 7 bytes. This package contains 3
classes and 2 interfaces. The sum of all internal_class_signature instances sizes, excluding
the method_signatures array, is thus 5 ∗ (2 + 1 + 2) = 25 bytes. This package contains 20
methods: 17 have bytecode instructions (i.e.are implemented), and 14 are visible (i.e.have
a token set). The sum of all internal_method_signature instances sizes, excluding the
intermediate_signatures array, is thus 20+14+2∗17+S(0)+17∗S(1)+S(2)+S(3)+20∗2 = 966
bytes. In this package, the total count of instructions targeted by a jump in the 17 imple-
mented methods is 157, so 157 intermediate signatures appear in the NICP. The sum of all
intermediate_signature instances sizes is thus 157∗2+3∗S(0)+138∗S(1)+13∗S(2)+3∗S(3) =
6186 bytes.

The total size of the NICP for the newepurse.cap package is the sum of all instantiated
structures: 6186 + 966 + 25 + 7 = 7184 bytes.

The NICP of the newjticket.cap Package. This package imports only the newepurse.cap pa-
ckage, and uses only 1 method of this package. So there is only one external method’s signature
needs in its NICP, and there is exactly one instance of each of the external_* structures. Assu-
ming the AID of the newepurse.cap package is made of 16 bytes (this is the maximal possible
size for an AID), the size of the external_package_signature, excluding the class_signatures
array, is (1 + 16) + 2 = 19 bytes. The size of the external_class_signature, including the
method_signatures array which size is 1 + S(1), is 3 + (1 + S(1)) = 40 bytes. So, the size of
the NICP, excluding the class_signatures array, is 1 + 2 + 2 + 2 + (19 + 40) = 66 bytes. This
package contains only 1 class. The size of the corresponding internal_class_signature struc-
ture, excluding the method_signatures array, is thus 2 + 1 + 2 = 5 bytes. This package contains
7 methods: 7 are implemented, and 3 are visible. The sum of all internal_method_signature
instances sizes, excluding the intermediate_signatures array, is thus 7 + 3 + 2 ∗ 7 + S(0) +
5 ∗ S(1) + S(3) + 7 ∗ 2 = 307 bytes. In this package, the total count of instructions targeted
by a jump in the 7 implemented methods of the package is 53, so 53 intermediate signa-
tures appear in the NICP. The sum of all intermediate_signature instances sizes is thus
53 ∗ 2 + 3 ∗ S(0) + 47 ∗ S(1) + 3 ∗ S(3) = 2065 bytes.

The total size of the NICP of the newjticket.cap package is the sum of all instantiated
structures: 2065 + 300 + 5 + 66 = 2436 bytes.

The NICP of the neweidapplet.cap Package. This package imports only the newepurse.cap
package, and uses only 1 method of this package. So there is only one external method’s
signature in its NICP, and there is exactly one instance of each of the external_* structures. As-
suming the AID of the newepurse.cap package is made of 16 bytes (this is the maximal possible
size for an AID), the size of the external_package_signature, excluding the class_signatures
array, is (1 + 16) + 2 = 19 bytes. The size of the external_class_signature, including the
method_signatures array which size is 1 + S(1), is 3 + (1 + S(1)) = 40 bytes. So, the size
5Import and use of JavaCard and GlobalPlatform APIs are not taken into account as they are considered safe and no
signature is attached to their methods.

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 42/98



of the NICP, excluding the class_signatures array, is 1 + 2 + 2 + 2 + (19 + 40) = 66 bytes.
This package contains 6 classes and 1 interface. The sum of all internal_class_signature
instances sizes, excluding the method_signatures array, is thus 7 ∗ (2 + 1 + 2) = 35 bytes.
This package contains 82 methods: 81 are implemented, and 38 are visible. The sum of all
internal_method_signature instances sizes, excluding the intermediate_signatures array,
is thus 82 + 38 + 2 ∗ 81 + 25 ∗ S(0) + 20 ∗ S(1) + 32 ∗ S(2) + 4 ∗ S(3) + S(4) + 82 ∗ 2 = 3696
bytes. In this package, the total count of instructions targeted by a jump in the 81 implemented
methods of the package is 733, so 733 intermediate signatures appear in the NICP. The sum
of all intermediate_signature instances sizes is thus 733 ∗ 2 + 97 ∗ S(0) + 169 ∗ S(1) + 448 ∗
S(2) + 17 ∗ S(3) + 2 ∗ S(4) = 33177 bytes.

The total size of the NICP of the neweidapplet.cap is the sum of all instantiated structures:
33177 + 3696 + 35 + 66 = 36974 bytes.

The NICP of the newmypackage.cap Package. This package imports the newepurse.cap
package and the neweidapplet.cap package. Two methods defined in the same interface
of the newepurse.cap package are invoked, while only one method in one interface of the
neweidapplet.cap package is invoked. The NICP of this package thus contains 2 instances of
the external_package_signature structure, plus 2 instances of the external_class_signature
structure, and 3 instances of the external_method_signature structure. Assuming the two
AIDs of the imported packages are each made of 16 bytes (this is the maximal possible
size for an AID), the total size of the two external_package_signature instances, excluding
their class_signatures array, is 2 ∗ ((1 + 16) + 2) = 38 bytes. The total size of the two
external_class_signature instances, excluding their method_signatures array, is 2∗(1+2) = 6
bytes. The total size of the three external_method_signature instances is 3 + 3 ∗ S(1) = 111
bytes. So, the size of the NICP, excluding the class_signatures array, is 1 + 2 + 2 + 2 +
38 + 6 + 111 = 162 bytes. This package contains 2 classes and 1 interface. The sum of
all internal_class_signature instances sizes, excluding the method_signatures array, is
thus 3 ∗ (2 + 1 + 2) = 15 bytes. This package contains 17 methods: 16 are implemented,
and 6 are visible. The sum of all internal_method_signature instances sizes, excluding the
intermediate_signatures array, is thus 17 + 6 + 2 ∗ 16 + 3 ∗ S(0) + 10 ∗ S(1) + S(2) + 2 ∗
S(3) + S(5) + 17 ∗ 2 = 801 bytes. In this package, the total count of instructions targeted
by a jump in the 16 implemented methods of the package is 187, so 187 intermediate signa-
tures appear in the NICP. The sum of all intermediate_signature instances sizes is thus
187 ∗ 2 + 16 ∗ S(0) + 141 ∗ S(1) + 4 ∗ S(2) + 19 ∗ S(3) + 7 ∗ S(5) = 7962 bytes.

The total size of the NICP of the newmypackage.cap is the sum of all instantiated structures:
7962 + 801 + 15 + 162 = 8940 bytes.

On-Device Repositories

The size of on-device repositories is given according to the deployment scenario, after the
installation of the each new package.

After the Installation of the newepurse.cap Package. There exists a single instance of
the ondevice_signature_repositories structure which has a size of 1 byte, excluding its
package_signature array. There exists only one instance of ondevice_package_signature
corresponding to the newepurse.cap package, and its size, excluding the class_signatures
array, is 3 bytes. The newepurse.cap package contains 5 classes/interfaces, so the sum of
the five ondevice_class_signature instances sizes, excluding the intermediate_signatures
array, is thus 5 ∗ (2 + 1 + 2) = 35 bytes. The newepurse.cap package contains 20 methods:
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17 implemented and 14 visible. So the sum of all corresponding ondevice_method_signature
instances sizes is 20 + 14 + 2 ∗ 17 +S(0) + 17 ∗ S(1) +S(2) +S(3) + 20 ∗ 2 = 966 bytes. The total
size of the single instance of ondevice_signature_repositories structure after the installation
of the newepurse.cap package is the sum of all the aforementioned structures, including the
dataflow: N + 1 + 3 + 35 + 966 = 1005 + N bytes. The following table gives some instances
of the size in bytes of on-device repositories after only the newepurse.cap package is installed
when n (and thus N ) varies:

n <4 4 5 6 7
N 1 2 3 4 6

Size 1006 1007 1008 1009 1011

After the Installation of the newepurse.cap and the newjticket.cap Packages. The single
instance of ondevice_signature_repositories structure has a size of 1 byte, excluding the
package_signature array. There are two instances of the ondevice_package_signature struc-
ture, each instance corresponding to an installed package. The sum of the sizes of these
two instances, excluding their class_signatures arrays, is 2 ∗ 3 = 6 bytes. There are 6
classes/interfaces installed (5 for newepurse.cap, 1 for newjticket.cap), so the sum of the
four ondevice_class_signature instances sizes, excluding their methods_signatures arrays,
is thus 6 ∗ (2 + 1 + 2) = 30 bytes. There are 27 methods installed: 24 implemented and
17 visible. So the sum of all corresponding ondevice_method_signature instances sizes is
27 + 17 + 2 ∗ 24 + 2 ∗ S(0) + 22 ∗ S(1) + S(2) + 2 ∗ S(3) + 27 ∗ 2 = 1165 bytes. The total
size of the single instance of ondevice_signature_repositories structure after the installation
of these packages is the sum of all the aforementioned structures, including the dataflow:
N + 1 + 6 + 30 + 1165 = 1202 + N bytes. The following table gives some instances of the size in
bytes of on-device repositories after installation of the newepurse.cap and the newjticket.cap
packages when n (and thus N ) varies:

n <4 4 5 6 7
N 1 2 3 4 6

Size 1203 1204 1205 1206 1208

After the Installations of the First Three Packages. There exists a single instance of the
ondevice_signature_repositories structure which has a size of 1 byte, if we exclude its
package_signature array. There are three instances of the ondevice_package_signature struc-
ture, each instance corresponding to an installed package. The sum of the sizes of these three
instances, excluding their class_signatures arrays, is 3∗3 = 9 bytes. There are 13 classes/inter-
faces installed (5 for newepurse.cap, 1 for newjticket.cap, 7 for neweidapplet.cap), so the sum
of the four ondevice_class_signature instances sizes, excluding their methods_signatures
arrays, is thus 13 ∗ (2 + 1 + 2) = 65 bytes. There are 109 methods installed: 105 implemented
and 55 visible. So the sum of all corresponding ondevice_method_signature instances sizes is
109+55+2∗105+27∗S(0)+42∗S(1)+33∗S(2)+6∗S(3)+S(4)+109∗2 = 4861 bytes. The total
size of the single instance of ondevice_signature_repositories structure after the installation
of these packages is the sum of all the aforementioned structures, including the dataflow:
N + 1 + 9 + 65 + 4861 = 4936 + N bytes. The following table gives some instances of the size in
bytes of on-device repositories after installation of the newepurse.cap, the newjticket.cap and
the neweidapplet.cap packages when n (and thus N ) varies:

n <4 4 5 6 7
N 1 2 3 4 6

Size 4937 4938 4939 4940 4942
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At the End of the Scenario. The single instance of the ondevice_signature_repositories
structure has a size of 1 byte, excluding its package_signature array. There are four instances
of the ondevice_package_signature structure, each instance corresponding to an installed
package. The sum of the sizes of these four instances, excluding their class_signatures
arrays, is 4 ∗ 3 = 12 bytes. There are 16 classes/interfaces installed (5 for newepurse.cap,
1 for newjticket.cap, 7 for neweidapplet.cap, 3 for newmypackage.cap), so the sum of the
four ondevice_class_signature instances sizes, excluding their methods_signatures arrays,
is thus 16 ∗ (2 + 1 + 2) = 80 bytes. There are 126 methods installed: 121 implemented and
61 visible. So the sum of all corresponding ondevice_method_signature instances sizes is
126 + 61 + 2 ∗ 121 + 30 ∗ S(0) + 52 ∗ S(1) + 34 ∗ S(2) + 8 ∗ S(3) + S(4) + S(5) + 126 ∗ 2 = 5662
bytes. The total size of the single instance of ondevice_signature_repositories structure
after the installation of these packages is the sum of all the aforementioned structures, including
the dataflow: N + 1 + 12 + 80 + 5662 = 5755 + N bytes. The following table gives some
instances of the size in bytes of on-device repositories after installation of the newepurse.cap,
the newjticket.cap, the neweidapplet.cap and the newmypackage.cap packages when n (and
thus N ) varies:

n <4 4 5 6 7
N 1 2 3 4 6

Size 5756 5757 5758 5759 5761

4.3 Security-by-Contract for HOMES

Work Package 6 (On-device verification part of it) of the Secure Change project focuses on
the verification methodologies which can be used on resource-constrained Java-based devices
to ensure that entities (for example, applications) are interacting in compliance with some
pre-defined security policies.

The HOMES case study is a case study of the Secure Change project, that was chosen as a
secondary case study for WP6 (due to unavailability of code the ATM case study is not applicable
for WP6). In the current deliverable we propose the Security-by-Contract methodology applied
for the HOMES case study.

The HOMES case study describes the OSGi platform as a part of a smart home. The
OSGi platform is therefore the focus of the current study. In a nutshell, the SxC methodology
enables each bundle coming onto the OSGi platform with a contract embedded into its manifest
file. The contract contains details about bundle’s functional requirements, and also it lists
permissions for access to the services and packages of the current bundle. The PolicyChecker
component embedded on the platform checks during installation that the requirements of the
bundle are satisfied. Thus the SxC enables dynamic functionality and security enforcement in
a changing environment when bundles from different providers are installed or removed while
various provided services can be launched or stopped.

4.3.1 The HOMES Case Study

The HOMES case study of the Secure Change project describes a smart home that explores the
OSGi technology (more information is available in D1.1.1 and D1.2 [2, 3]). OSGi is, in essence,
a specification of a Java-based dynamic module system that is developed and maintained by the
OSGi Alliance [43]. The OSGi Service Platform encompasses functions to change the provided
functionality dynamically on the device on a variety of networks, without requiring restarts. To
minimize the coupling, as well as make these couplings managed, the OSGi technology provides

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 45/98



a service-oriented architecture that enables the modules to dynamically discover each other for
collaboration.

The Change Requirement and the Security Property

The chosen change requirement from D1.1.1 and D1.2 is Bundle Life Cycle Operations. The
chosen security property is

Secure extensibility: The home gateway can be extended at run time with additional general
software, coming from third parties in many cases. Such extensions should be verified to be
secure in the sense that they do not introduce unauthorized information leaks or the possibility
of denial of service.

4.3.2 Security by Contract for HOMES

We present the SxC methodology that is able to capture interactions of bundles on the OSGi
platform and ensure these interactions are compliant with the specified security policies, thus
enforcing the chosen security property Secure Extensibility. The current proposal demonstrates
that the on-device verification techniques developed by WP6 can in fact be used in domains
different from the Java Card technology (where we have spent the most of our effort). Moreover,
various platforms can experience different benefits from the SxC methodology, depending on the
computations resources available and trust assumptions made.

SxC’s basic idea for OSGi is that each bundle will have a contract embedded into its manifest
file. The contract contains details on the functional requirements and lists access permissions
for the sibling services on the platform. During installation of bundles the contract is extracted
and matched with the platform security policy aggregating the contracts of all installed bundles.
Thus after the check we can be sure (under reasonable assumptions) that the incoming bundle
respects the security limitations posed by other bundles.

The SxC proposal for the OSGi frameworks is detailed in Appendix F. It contains the notation
for bundles’ policies and a general description how the SxC approach can improve the current
OSGi framework security management.
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5. Conclusions

The technologies developed in Secure Change Work Package 6 provide substantial additional
security guarantees for evolving software systems. The off-device verification provides strong
guarantees on memory safety and absence of data-races. In addition, optional programmer
provided correctness criteria (up to full functional correctness) can be verified. The on-device
verification techniques can check security properties of newly loaded components in open
systems. A range of techniques has been developed that explore different trade-offs with respect
to verification effort and security guarantees provided.

We have developed the theory behind our techniques, have provided prototype implementa-
tions for the most promising techniques, and have evaluated them in the Secure Change case
studies POPS and HOMES.

The overall conclusion of these evaluations is positive: we report on successful applications
of both off-device and on-device verification techniques. However, we have also identified
shortcomings of the current prototypes, and future research and development is needed to
address these.

In this concluding chapter, we summarize the work we did by recapitulating the results on the
two WP6 case studies. We draw conclusions and outline ongoing future directions of research.

5.1 Verification in the POPS Case Study

The POPS case study was the primary case study for work package 6. All our technologies
were developed with this application case study in mind, and all implemented technologies were
evaluated on this case study.

We developed a sizable application scenario for the POPS case study consisting of four
interacting applets (two relatively small, newly developed applets, and two relatively large,
existing applets), and we have shown how both off-device verification as well as on-device
verification applies to this scenario.

5.1.1 Off-Device Verification

All applets from the scenario (but most notable the two existing non-trivial Java Card applets)
were annotated and verified for correctness with respect to certain common programming errors.
In particular, the verification proved that the applet does not contain transaction errors, performs
no out of bounds operations on buffers, and never dereferences null pointers.

The results of this experiment are encouraging: with an annotation overhead of about four
lines of annotations per five lines of code we found a total of 13 bugs in the eID applet, and 25
locations where transactions were not properly used.

The case study has led to a number of useful insights and showed us some of the rougher
edges of the VeriFast tool that need to be polished some more. Most of the issues were small
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and were either bugs in the tool (for instance, Java parsing errors) or functionality that was easy
to implement but had not been done yet due to time constraints.

Currently, only a subset of the Java Card API is supported by VeriFast. For example, we do
not support multi-applet applications that communicate via the shareable interface mechanism
yet. We intend to support these additional features and write specifications for all library functions
in the Java Card API.

An important, missing feature that turned out to greatly reduce the annotation overhead (and
hence reduce the cost of verification) is automatic inference of open and close statements and
of lemma applications. For example, the eID applet contains 211 open and close statements.
While VeriFast already infers some ghost statements, we believe one of the most important steps
to improve the verification experience is extending this inference mechanism.

This case study has been invaluable for us to improve the tool. A number of bugs were fixed
and small additions were made in order to support the verification of the applets. A longer term
plan has also been established to further add improvements and optimizations to the tool. In
particular, the automatic generation of open and close statements is becoming an important
part of VeriFast, as well as language and technology-specific extensions to the tool.

Further development of the inference of annotations is the most important avenue for future
work.

5.1.2 On-Device Verification

In this deliverable, we have shown that the two non-implemented models (global policy and non-
interference) for on-device information protection can be implemented for the POPS scenario in
the same way as the transitive control flow and the SxC models are implemented and described
in the D6.5. The precise estimation of overhead memory consumptions both in CAP files of the
scenario and on-device given in this deliverable are quite promising, even if, according to GTO
partner, it still appears that memory consumption for the meta-data is too high for the targeted
UICC smart cards of the POPS scenario. Practically, we already see different ways to improve
memory consumption for this platform, such as indexing footprints/signatures of methods in
order to remove footprints/signatures redundancy, or including footprints/signatures in existing
components of the CAP file format to avoid a useless redundant index of packages, classes
and methods in a global policy/non-interfence custom component. Integration of these models
on concrete UICC smart cards requires a lot of human resources but it is a real engineering
challenge.

On-device verification of non-interference policies in an open context requires twice much
resources than the verification of global policies as it is for more complex. We think about two
theoretical future works to investigate in order to meet the requirements of embedded systems,
not only legacy smart cards: to propose a secure information flow model less refined than the
non-interference for simpler on-device verification, and to propose a global policy model enriched
with some information flow elements only on few relevant/critical data. Both approaches have
their pros and cons but each could lead to different solutions according to integrator and vendor
needs.

5.2 Verification in the HOMES Case Study

The HOMES case study was the secondary case study for work package 6. We investigated the
applicability of our verification technologies to HOMES.
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5.2.1 Development-Time Verification of Core Security Modules in HOMES

Sec. 3.2 describes the verification of a core security module, namely the PEP program provided
by TID, with VeriFast. PEP’s intended use is to install security policies on home gateway systems
by configuring network interfaces. The aim of our verification effort is on proving the absence of
bugs related to memory safety and race conditions.

The case study proceeds in two stages of feasibility studies revealing that extensive imple-
mentation work in VeriFast is required. After extending VeriFast, the final experiment on verifying
the PEP implementation is ongoing. Since PEP is production code, a low expectancy to detect
bugs was assumed. Yet, our verification work found a relatively high number of NULL-pointer
errors. On the downside, we found that the effort required to verify the PEP implementation was
higher than expected.

Nevertheless, our results show that VeriFast can be used to effectively find bugs in the
domain of low-level network management software. VeriFast gained substantially with respect to
its support of the C programming language and the VeriFast documentation can be extended to
give guidance for the verification of this kind of software. A very interesting avenue for future work
is to investigate in how far such guidance can make the verification of security-critical modules
(such as this PEP module, or more generally kernel modules or device drivers) sufficiently cheap.

5.2.2 Security by Contract for HOMES

Sec. 4.3 and related Appendix F contain the proposal how the Security-by-Contract approach
can be applied to the OSGi framework that constitutes the core of the HOMES case study. We
have reviewed the current drawbacks of the OSGi platforms in an open setting when bundles
from third-party providers can be deployed or removed from the platform. In this scenario the
bundle providers have very limited abilities to express their requirements on interactions with
their bundles. Our proposal is to place the bundle’s contract containing these requirements in
the bundle’s manifest file and to compare these requirements with the status of the platform
during the bundle deployment. We have developed the notation for bundle contracts compliant
with the manifest file syntaxis, with the proposed notation the bundle providers can also express
some functional requirements of their bundles, such as presence of a certain bundle, package
or service on the platform.

We did not have enough resources to implement the SxC bundle that could perform the
contract extraction and comparison with the current status of the platform (platform policy). We
expect, however, that the overhead of the deployment time SxC verification is acceptable, based
on our estimations and evaluation of the industrial partner (TID). For the future work we are
intended to pursue the following directions. It is interesting to enhance the proposed definition of
bundle interactions to capture more precise details of the interaction (service usage, method
invocation, information flow, etc). Also the scope of the bundle behavior can be extended to
include sensitive system API calls. All these extensions of the contracts will require to develop
methods to compare the contracts with the bundle’s bytecode (the ClaimChecker component).
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A. The Belgian Electronic Identity Card:
A Verification Case Study1

Authors: Pieter Philippaerts, Frédéric Vogels, Jan Smans2, Bart Jacobs and Frank Piessens

Abstract: In the field of annotation-based source code level program verification for Java-like
languages, separation-logic based verifiers offer a promising alternative to classic JML based
verifiers such as ESC/Java2, the Mobius tool or Spec#. Researchers have demonstrated the
advantages of separation logic based verification by showing that it is feasible to verify very
challenging (though very small) sample code, such as design patterns, or highly concurrent code.
However, there is little experience in using this new breed of verifiers on real code. In this paper
we report on our experience of verifying several thousands of lines of Java Card code using
VeriFast, one of the state-of-the-art separation logic based verifiers. We quantify annotation
overhead, verification performance, and impact on code quality (number of bugs found). Finally,
our experiments suggest a number of potential improvements to the VeriFast tool.

A.1 Introduction

Software verification is finally reaching a point where it is possible to verify relatively complex
applications written in popular programming languages. Even though it is still often a significant
effort to annotate applications in order to help them get verified automatically, the benefits
outweigh the cost for a number of software markets. In particular, software with a very high cost
of failure (for example, airplane controllers) or software for systems that are difficult to update
after deployment (for example, smart cards) are perfect candidates for software verification.

VeriFast [30] is a verifier for single-threaded and multithreaded C and Java programs annota-
ted with separation logic specifications. The approach enables programmers to ascertain the
absence of invalid memory accesses, including null pointer dereferences and out-of-bounds
array accesses, as well as compliance with programmer-specified method preconditions and
postconditions.

This paper will assess the applicability of verification of Java Card applets using the VeriFast
approach. Two non-trivial applets are annotated and an analysis of the verification effort and
results is made. Section A.2 introduces the VeriFast tool and gives a short introduction to Java
Card technology. Section A.3 describes the applets that were used in this case study and gives
a short overview of some of the solutions we used to annotate certain features. Section A.4
evaluates the results of the case study and Section A.5 summarizes the future work. Finally,
Section A.6 concludes the paper.
1To appear in: P. Philippaerts, F. Vogels, J. Smans, B. Jacobs, F. Piessens. The Belgian electronic identity card: a
verification case study. AVoCS 2011, 2011.

2Jan Smans is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO)

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 54/98



A.2 Background

The results in this paper build on two technologies that will be presented in this section. Sec-
tion A.2.1 presents a short overview of the verification technology used in this case study, and
Section A.2.2 introduces the features of the Java Card platform relevant to the applets being
verified.

A.2.1 VeriFast

VeriFast [30] is a verifier for Java and C programs annotated with separation logic [40] specifica-
tions. The tool modularly checks via symbolic execution [9] that each method in the program
satisfies its specification. If VeriFast deems a Java program to be correct, then that program
does contain neither null dereferences, array indexing errors, API usage violations nor data
races. Moreover, all user-specified assertions are guaranteed to hold.

At the heart of the separation logic lies the concept of permissions. In particular, a method
can only access a field if it has permission to do so. For example, consider the class Interval
shown below. o.low |-> v denotes (1) the permission to access (read and write) the field low
of the Interval object o and (2) that the current value of that field is v.

Listing A.1: VeriFast annotations in Java code

1 /*@ predicate interval(Interval i, int l, int h) =
2 i.low |-> l &*& i.high |-> h &*& l <= h;
3 @*/
4
5 public class Interval {
6 int low , high;
7
8 void shift(int amount)
9 //@ requires interval(this , ?low , ?high);

10 //@ ensures interval(this , low + amount , high + amount );
11 {
12 //@ open interval(this , low , high);
13 this.low += amount;
14 this.high += amount;
15 //@ close interval(this , low + amount , high + amount );
16 }
17 }

To distinguish full (read and write) from read-only access, permissions are qualified with
fractions [10] between 0 (exclusive) and 1 (inclusive), where 1 corresponds to full access and any
other fraction represents read-only access. For example, [f]o.low |-> v denotes read-only
access if f is less than 1 and full access if f equals 1. We typically omit explicitly writing [1] for
full permissions. Permissions can be split and merged as required during the proof. For example,
two read-only permissions [1/2]o.low |-> v and [1/2]o.low |-> v can be combined into a
single full permission [1]o.low |-> v and vice versa. In the context of Java Card, we rely on
fractional permissions to check that fields are not assigned to outside of transactions.

To abstract over the set of permissions required by a method, permissions can be grouped
and hidden via predicates. For example, consider the predicate interval shown above. This
predicate groups the permissions to access low and high, and additionally states that the value
of low must be less or equal to the value of high. Just like basic permissions, predicates can be
split and merged as required during the proof.

Each method in the program has a corresponding method contract consisting of a pre- and
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postcondition that respectively describe the permissions required and returned by the method.
More specifically, the permissions described by the precondition conceptually transfer from the
caller to the callee on entry to the method, and vice versa for the postcondition when the method
returns. For example, consider the method shift in the class Interval. shift’s precondition
states that the method may only be called if this points to a valid interval (where the meaning of
“valid interval” is determined by the predicate interval). The precondition imposes no restriction
on the interval’s bounds, but binds the lower bound to the variable low (indicated by the question
mark) and the upper bound to high. The postcondition ensures that this is still a valid interval,
and its bounds have been shifted by amount with respect to the method pre-state. Note that our
verification tool requires all annotations to be written inside special comments (/*@ ... @*/)
which are ignored by the Java compiler but recognized by our verifier.

VeriFast does not automatically fold and unfold predicate definitions. Instead, folding and
unfolding must be done explicitly by developers via ghost commands (unless the predicate is
marked precise). For example, the open statement in the body of shift unfolds the definition of
the predicate interval, and similarly the close statement folds the definition. Verification of the
code snippet shown above fails if any of the ghost statements is removed.

In addition to static predicates (placed outside of a class), VeriFast also supports instance
predicates (placed inside of a class). Just like instance methods, instance predicates are
dynamically bound. That is, the variable this is an implicit argument to each instance predicate,
and its dynamic type determines the exact meaning of the predicate. For example, the interface
Vehicle shown below defines the instance predicate valid. The meaning of valid depends on
the subclass at hand. For example, o.valid() denotes the permission to read the field maxspeed
if the dynamic type of o is Car. In the context of Java Card, we use instance predicates to
describe consistency conditions for applets (i.e. the invariant that must be preserved by each
transaction).

Listing A.2: Instance predicates.

1 interface Vehicle {
2 //@ predicate valid ();
3 }
4 class Car implements Vehicle {
5 int maxspeed;
6
7 //@ predicate valid () = [1/2] this.maxspeed |-> _;
8 }

The extended static checker for Java (Esc/Java) [19] is another program verifier that has
been used to verify Java Card programs [38, 14]. However, Esc/Java is unsound [36, Appendix
C.0]. This means that Esc/Java can fail to detect certain bugs. For example, the extended static
checker reasons incorrectly about object invariants in the presence of reentrant calls. Unlike
Esc/Java, the VeriFast methodology has been proven to be sound [29].

Gomes et al. [23] have investigated using the B method to generate correct Java Card
implementations from abstract models via refinement. Contrary to the B method, VeriFast
does not start from an abstract model, but instead reasons directly about the applet’s source
code. The advantage of our approach is that we can retroactively prove correctness of existing
implementations.

VeriFast performs modular verification. This means that the verifier analyzes each method
in isolation using only method contracts (not the callees’ implementations) to reason about
method calls. An advantage of modular reasoning is that verification scales (verification times
remain low) and that deep properties can be specified and checked. A disadvantage however
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is that the developer must write annotations at method boundaries. To avoid having to write
annotations, Huisman et al. [27] have used model checking to find bugs in Java Card applications.
Unlike VeriFast, Huisman et al. do not aim to prove the absence of all errors, but only of certain
undesired applet interactions.

Mostowski [37] has written a specification for the Java Card API in dynamic logic. In addition,
he has used this specification to verify a number of applets using the Key verifier. A recurring
problem encountered during these case studies was bad prover performance. For example,
Mostowski states that “it is not uncommon for the prover to run over an hour to finish the proof
of one method”. Contrary to [37], we use separation logic to specify the Java Card API. While
separation logic has proven to be a powerful specification formalism for reasoning about complex
(but small) examples such as design patterns and highly concurrent code, there is only limited
experience in applying separation logic to larger, realistic programs. This paper reports on our
experience in applying separation logic to verify realistic Java Card code. An explicit goal of
VeriFast is to keep verification times low. For example, the time needed to verify full functional
correctness of a single method is typically under one second.

A.2.2 Java Card

The Java Card platform [41] was initially launched by Sun in 1996 and aimed to simplify the
development of smart card applications. Until then, smart card code was largely written in C,
which is difficult to write in the first place, and also has distinct disadvantages in terms of security
and reliability.

The Java Card platform allowed developers to write smart card applets in a subset of the
Java language that targets a specifically optimized Java framework for smart cards. The older
(and most popular) platform, now called Java Card Classic Edition, does not support floating
point operations, strings, multi-threading, garbage collection, stack inspection, multidimensional
arrays, reflection, etc. The newest Java Card 3.0 Connected Edition supports more features but
is still lacking compared to the full Java language and framework.

Java Card is now the dominant platform for smart cards, with applications for GSM, 3G,
finance, PKI, e-commerce and e-government. Due to the absence of serious competition and
the improvements of the latest incarnation of the Java Card platform, it can be expected that this
will remain the case in the near future.

Applets

The entry point of each Java Card applet is a class that extends the built-in, abstract class
javacard.framework.Applet. This class defines a number of methods that are called by the
Java Card runtime to interact with the applet. In particular, the class Applet defines an abstract
method process that must be overridden by the subclass. The implementation of process forms
the core of the applet. More specifically, process takes an apdu (i.e. a wrapper around a byte
array) as input, processes it, and possibly returns an updated apdu to the runtime. Typically, the
apdu contains both information on the action that should be performed by the applet and data
associated with that action.

A subclass of javacard.framework.Applet is a valid applet only if it declares a static method
called install. The goal of this method is to create a new applet instance and to register this
instance with the runtime. The class MyApplet shows the prototypical structure of a Java Card
applet.

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 57/98



Listing A.3: The prototypical structure of an applet.

1 class MyApplet extends Applet {
2 public static void install(byte[] arr , short offset , byte length) {
3 MyApplet applet = new MyApplet ();
4 // initialize the applet
5 applet.register ();
6 }
7
8 public void process(APDU apdu) {
9 // process the apdu

10 }
11 }

Transactions

Java Card applets use two types of memory to store data and intermediate results. Fields and
objects are stored in persistent EEPROM memory, whereas the stack (and hence local variables)
are stored in volatile RAM memory. In addition, the applet can also choose to allocate arrays in
RAM memory, because this type of memory is faster and is harder for attackers to read. This
complicates things because the smart card may lose power at any time during the computation,
which results in the RAM memory being wiped, whereas the EEPROM memory retains the
intermediate results.

To preserve consistency of the data stored in persistent memory, Java Card supports
transactions. More specifically, the platform defines three methods to interact with the tran-
saction mechanism: beginTransaction, commitTransaction, and abortTransaction. When
beginTransaction is called, all changes to persistent memory are made conditionally. Only
when a call to commitTransaction is executed, the changes to the persistent memory are
committed atomically. If abortTransaction is called instead, or if the card suddenly loses power
before calling commitTransaction, the persistent memory is restored to its original state (on card
boot-up when power is restored). Note that the transaction mechanism does not impact values
stored in RAM. Incorrect use of the transaction API, for example calling beginTransaction while
a transaction is already in progress, results in an exception.

Java Card and VeriFast

VeriFast was originally developed for C and Java programs, but has been modified to also
support Java Card applications. The Java language used for Java Card applications is a precise
subset of the full Java language, thus adding Java Card support to VeriFast was easy.

Java Card does, however, use a very different class library optimized for smart cards. VeriFast
needs to know for every function in the library the pre- and postconditions in order to reason
about code. These specifications are placed in a separate file that defines all the classes and
methods in the Java Card framework. The specifications are based on the descriptions of these
methods in the official Java Card documentation. The actual implementation of these library
functions is not checked.

Building the specification file is an incremental process. VeriFast only needs pre- and
postconditions for the methods that are actually used by the applications you want to verify.
Hence, only a subset of the full Java Card class library has been annotated in the specification
file. It is critical that the specifications of library functions is correct; errors in their annotations
could lead to errors in the verification process. Therefore, extreme diligence is used when adding
new function definitions to the specification.

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 58/98



A.3 Case Study

Software verification is still a very time-consuming process. Existing or new source code must
be annotated in order to express assumptions and invariants, and to let the verifier reason about
the code. Minimizing these required annotations is an active field of research where a lot of work
remains to be done. For current verification technologies the overhead of annotating code is far
from negligible, so it is not (yet) economically profitable to try to annotate and verify every piece
of code. Large, non-critical code bases are examples where the effort probably is not worth the
hassle.

However, smart card applications have a number of properties that do make them ideal
candidates for software verification. First of all, they are typically small, in the order of a few
thousand lines of code. Secondly, they are critical, in the sense that they usually offer some kind
of security service. And last but not least, it is extremely difficult to update the code once it has
been deployed. If a serious bug is discovered in the code, it might be necessary to recall all the
deployed smart cards and issue new ones, which could be a commercial disaster.

This paper reports on the verification of two Java Card applets: one large open source applet
that implements a clone of the Belgian Electronic Identity Card, and another smaller commercial
applet.

The remainder of this section focusses on the larger, open source applet. Unfortunately, due
to contractual constraints we are not allowed to discuss the details of the commercial applet.

A.3.1 The Belgian Electronic Identity Card

The Belgian Electronic Identity Card (eID) was introduced in 2003 as a replacement for the
existing non-electronic identity card. Its purpose is to enable e-government and e-business
scenarios where strong authentication is necessary. The card has the size of a standard credit
card and features an embedded chip. In addition to containing a machine readable version of
the information printed on the card, the chip also contains the address of the owner and two
RSA key pairs with the corresponding X509 certificates. One key pair is used for authentication,
whereas the other key pair can be used to generate legally binding electronic signatures.

The card is implemented on top of the Java Card platform (Classic Edition) and implements
the smart card commands as defined in the ISO7816 standard. Unfortunately, the actual code
that runs on the eID cards is not publicly available. For our case study, we used an open source,
cloned version of the eID applet that implements the same functionality as the real eID card3. It
is aimed at developers who wish to interact with eID cards as an easy to use and customizable
testing platform.

The eID implementation consists of one large class called EidCard and a few other small
helper classes. The EidCard class inherits from the Applet class and encapsulates about 80%
of the entire code base. It is a complex class of about 900 lines of code and no less than 38
fields.

A.3.2 Specification of Transaction Correctness

Java Card offers transactions to preserve consistency of the data stored in persistent memory.
However, what does it mean for an applet to be consistent? In VeriFast, developers can explicitly
write down what fields are part of the persistent state together with the desired consistency
conditions. More specifically, the class Applet defines an instance predicate called valid. Each
subclass must override this predicate. The implementation of the predicate given in the subclass
defines the consistency conditions for the applet at hand. For example, consider the applet
3The code can be downloaded from http://code.google.com/p/eid-quick-key-toolset/

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 59/98

http://code.google.com/p/eid-quick-key-toolset/


class ExampleApplet shown below. The predicate valid indicates that both the fields arr and i,
and the array pointed to by arr are part of the persistent state (line 6). Moreover, the predicate
imposes the consistency condition that i is a valid index in arr (line 7).

Listing A.4: The contract of the process method, using fractional permissions.

1 class ExampleApplet extends Applet {
2 short i;
3 short[] arr;
4 /*@
5 predicate valid () =
6 this.arr |-> ?arr &*& this.i |-> ?i &*&
7 array_slice(arr , 0, ?len , _) &*&
8 0 <= i &*& i < len;
9 @*/

10 }

While reading fields is possible at any time, updates to persistent memory should be made
inside of a transaction. The permission system used by VeriFast is the key to enforcing this
property. More specifically, at the start of the process method, no transaction is in progress.
As shown in Listing A.5, the precondition of process contains 1/2 of the valid predicate. This
means that the method can read but not update fields included in valid (as the method only
has one half of the permissions included in valid). The predicate current_applet is simply a
token describing the currently active applet.

Listing A.5: The contract of the process method, using fractional permissions.

1 public void process (...)
2 //@ requires current_applet(this) &*& [1/2] valid() &*& ...;
3 //@ ensures current_applet(this) &*& [1/2] valid () &*& ...;
4 {
5 ...
6 }

To update the fields of the applet, the method should somehow gain additional permissions
(namely the other half of the valid predicate). These additional permissions can be acquired
by calling beginTransaction. In particular, the postcondition of beginTransaction shown in
Figure A.6 gives 1/2 of the valid predicate. The process method can then merge [1/2]valid()
(gained from the precondition of process) and [1/2]valid() (gained from the postcondition of
beginTransaction) into [1]valid(). The full permission to valid gives the applet the right to
modify the applet’s fields for the duration of the transaction. When calling commitTransaction,
half of the permissions included in the valid() predicate return to the system again. Note
that it is impossible to call endTransaction if the applet is in an invalid state (according to
the conditions described by valid), as the precondition of commitTransaction requires the
consistency conditions to hold.

A.3.3 Inheritance

The ISO7816 standard specifies a mechanism to access files that are stored on a smart card.
Three types of files are defined:

1. Master files represent the root of the file system. Each smart card contains at most one
master file.
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Listing A.6: The declaration of the beginTransaction and commitTransaction methods

1 public static void beginTransaction ();
2 //@ requires current_applet (?a) &*& ...;
3 //@ ensures current_applet(a) &*& [1/2]a.valid() &*& ...;
4
5 public static void commitTransaction ();
6 //@ requires current_applet (?a) &*& a.valid() &*& ...;
7 //@ ensures current_applet(a) &*& [1/2]a.valid() &*& ...;

2. Elementary files contain actual data.

3. Dedicated files behave like directories. They can contain other dedicated or elementary
files.

To represent this structure, the eID implementation uses helper classes that form a class
hierarchy. The root of the hierarchy is the abstract File class. This class has two sub-
classes: DedicatedFile and ElementaryFile. And finally, the MasterFile class inherits from
DedicatedFile.

When a class is defined in the source code, it can be annotated with a predicate that
represents an instance of that class. These predicates can then be used elsewhere to represent
a fully initialized instance of that class. Listing A.7 shows how a File predicate can be defined for
the corresponding File class. The class consists of two fields, which are also represented in the
predicate. The predicate can also contain other information about the class such as invariants.

Listing A.7: A first definition of the File class and predicate.

1 public abstract class File {
2 /*@ predicate File(short theFileID , boolean activeState) =
3 this.fileID |-> theFileID &*&
4 this.active |-> activeState; @*/
5
6 private short fileID;
7 protected boolean active;
8
9 ...

10 }

The ElementaryFile class redefines the File predicate as shown in lines 2-4 of Listing A.8. A
File predicate that is associated with an ElementaryFile class is defined as an ElementaryFile
predicate where three of the five parameters are undefined.

The definition of the ElementaryFile predicate (lines 5-13) consists of a link to the File
predicate defined in Listing A.7 and some extra fields and information that are specific to
elementary files.

When an object is cast from the File to the ElementaryFile class (or vice versa), the
corresponding predicate on the symbolic heap must be changed as well. We ‘annotated’ this
by adding the methods that are defined in Listing A.9 to the ElementaryFile class and calling
these methods when required. Obviously, this solution is far from elegant because it requires
adding calls to stub functions in the code of the applet. The most recent version of VeriFast
supports annotating this behavior as lemma methods (i.e. methods defined inside an annotation),
removing the requirement of modifying the applet’s code.

One problem that occurs with the methods presented in Listing A.9 is that information is lost
when an ElementaryFile is cast to a File and then back again to an ElementaryFile. This
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Listing A.8: A first definition of the ElementaryFile class and predicate.

1 public final class ElementaryFile extends File {
2 /*@ predicate File(short theFileID , boolean activeState) =
3 ElementaryFile(theFileID , ?dedFile , ?dta ,
4 activeState , ?sz); @*/
5 /*@ predicate ElementaryFile(short fileID ,
6 DedicatedFile parentFile , byte[] data ,
7 boolean activeState , short size) =
8 this.File(File.class)(fileID , activeState) &*&
9 this.parentFile |-> parentFile &*&

10 this.data |-> data &*& data != null &*&
11 this.size |-> size &*&
12 array_slice(data , 0, data.length , _) &*&
13 size >= 0 &*& size <= data.length; @*/
14
15 private DedicatedFile parentFile;
16 private byte[] data;
17 private short size;
18
19 ...
20 }

Listing A.9: Functions to cast predicates.

1 public void castFileToElementary ()
2 //@ requires [?f]File(?fid , ?state);
3 //@ ensures [f]ElementaryFile(fid , _, _, state , _);
4 {
5 //@ open [f]File(fid , state);
6 }
7
8 public void castElementaryToFile ()
9 //@ requires [?f]ElementaryFile (?fid , ?dedFile , ?dta , ?state , ?sz);

10 //@ ensures [f]File(fid , state);
11 {
12 //@ close [f]File(fid , state);
13 }

loss of information happens in the castFileToElementary method where three parameters are
left undefined.

There are some instances in the eID applet where this loss of information is problematic. The
solution was to extend the File and ElementaryFile predicates to contain an extra parameter
that can store any information. The result can be seen in Listing A.10. Line 3 shows the
definition of this extra parameter. In the case of the File class, no extra information is kept and
the parameter is defined to be empty (denoted as ‘unit’ on line 5). Similarly, line 22 defines the
parameter to be empty for the ElementaryFile predicate, because all state information that can
be stored in the predicate is fully defined by the other parameters.

Line 14 shows the case where the predicate needs the extra parameter to store additional
information about the object. In this case, the info parameter stores a quad-tuple of extra
information that can be used to correctly initialize the embedded ElementaryFile predicate
without losing information.
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Listing A.10: A more complete definition of the File and ElementaryFile predicates that supports downcasting.

1 public abstract class File {
2 /*@ predicate File(short theFileID , boolean activeState ,
3 any info) =
4 this.fileID |-> theFileID &*&
5 this.active |-> activeState &*& info == unit; @*/
6
7 ...
8 }
9

10 public final class ElementaryFile extends File {
11 /*@ predicate File(short theFileID , boolean activeState ,
12 quad <DedicatedFile , byte[], short , any > info) =
13 ElementaryFile(theFileID , ?dedFile , ?dta , activeState ,
14 ?sz , ?ifo) &*& info == quad(dedFile , dta , sz, ifo); @*/
15 /*@ predicate ElementaryFile(short fileID ,
16 DedicatedFile parentFile , byte[] data , boolean activeState ,
17 short size , any info) =
18 this.File(File.class)(fileID , activeState , _) &*&
19 this.parentFile |-> parentFile &*&
20 this.data |-> data &*& data != null &*& this.size |-> size
21 &*& array_slice(data , 0, data.length , _) &*&
22 size >= 0 &*& size <= data.length &*& info == unit; @*/
23
24 ...
25 }

A.4 Evaluation

The main goal of this case study was to see how practical it is to use VeriFast to annotate a
Java Card applet that is more than a toy project. It gives us an idea of how much the annotation
overhead is, where we can improve the tool, and whether we can actually find bugs in existing
code using this approach.

A.4.1 Annotation Overhead

The more information the developer gives in the annotations about how the applet should behave,
the more VeriFast can prove about it. It is up to the developer to choose whether he wants to
use VeriFast as a tool to only detect certain kinds of errors (unexpected exceptions and incorrect
use of the API), or whether he wants to prove full functional correctness of the applet. Both
modi operandi are supported by the tool. For the Java Card applets, we used the annotations to
prove that the applet does not contain transaction errors, performs no out of bounds operations
on buffers, and never dereferences null pointers. While we have used VeriFast to verify full
functional correctness of sequential and fine-grained concurrent data structures [29], specifying
and verifying full functional correctness of JavaCard applets is future work.

The eID applet and helper classes consist of 1,004 lines of Java Card code. In order to verify
the project, we added 802 lines of VeriFast annotations (or about four lines of annotations for
every five lines of code). The majority of these annotations were requires/ensures pairs (88
pairs, one for each method) and open and close statements (99 and 112 instances respectively).
Remarkably, only 8 predicates are defined throughout the entire code base, reflecting the design
decision of the authors of the applet to write most of it as one huge class file.

The commercial applet consists of 251 lines of Java Card code, which we annotated with
205 lines of VeriFast annotations. There were 13 requires/ensures pairs, 25 open statements
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and 29 close statements.
Another type of annotation overhead is the time it took to actually write the annotations.

The verification of the eID applet was performed by a senior software engineer without prior
experience with the VeriFast tool, but with regular opportunities to consult VeriFast expert users
during the verification effort. We did not keep detailed effort logs, but a rough estimate of the
effort that was required is 20 man-days. This includes time spent learning the VeriFast tool and
the Java Card API specifications. The commercial applet was annotated by a VeriFast specialist
and took about 5 man-days, excluding the time it took to add some new required features to the
tool.

A.4.2 Bugs and Other Problems

Because the eID applet in our case study is aimed at developers, the authors did not spend a lot
of time worrying about card tearing. This is demonstrated by the fact that they did not use the
Java Card transaction system at all. Using VeriFast, we found 25 locations where a card tear
could cause the persistent memory to enter an inconsistent state.

Three locations were found where a null pointer dereference could occur. An additional three
class casting problems were found, where a variable holding a reference to the selected file (of
type File) was cast to an ElementaryFile instance. These bugs could be triggered by sending
messages with invalid file identifiers to the smart card. Seven potential out of bounds operations
were also found in the code. These bugs could be triggered by sending illegal messages to the
smart card.

We also found a number of bugs in the commercial applet, even though it had already been
verified with another verification technology previously. We found an unsafe API call, a handful
of unchecked assumptions about incoming apdus, and four locations where transactions were
not used properly. Clearly, the tool used earlier was not sound or was not used in a sound way.

A.4.3 VeriFast Strengths

Compared to other program verifiers that target Java Card [37, 19], VeriFast has two advantages:
speed and soundness. That is, VeriFast usually reports in only a couple of seconds (usually
less) whether the applet is correct or whether it contains a potential bug. Secondly, if VeriFast
deems a program to be correct, then that program is guaranteed to be free from null pointer and
array index out of bounds exceptions, and API usage and assertion violations.

A feature that proved to be crucial in understanding failed verification attempts is VeriFast’s
symbolic debugger. As shown in Figure A.1, the symbolic debugger can be used to diagnose
verification errors by inspecting the symbolic states encountered on the path to the error. For
example, if the tool reports an array indexing error, one can look at the symbolic states to
find out why the index is incorrect. This stands in stark contrast to most verification condition
generation-based tools that simply report an error, but do not provide any help to understand the
cause of the error.

A.5 Future Work

This case study has led to a number of useful insights and showed us some of the rougher edges
of the tool that need to be polished some more. Most of the issues were small and were either
bugs in the tool (for instance, Java parsing errors) or functionality that was easy to implement
but hadn’t been done yet due to time constraints.

An important, missing feature that would greatly reduce the annotation overhead (and hence
reduce the cost of verification) is automatic inference of open and close statements and of
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Figure A.1: The symbolic debugger of VeriFast

lemma applications. For example, the eID applet contains 211 open and close statements. While
VeriFast already infers some ghost statements, we believe one of the most important steps to
improve the verification experience is extending this inference mechanism.

Currently, only a subset of the Java Card API is supported by VeriFast. For example, we do
not support multi-applet applications that communicate via the shareable interface mechanism
yet. We intend to support these additional features and write specifications for all library functions
in the Java Card API.

A.6 Conclusion

This paper reported on a case study for the VeriFast program verifier. Two non-trivial Java Card
applets were annotated and verified for correctness with respect to certain common programming
errors. In particular, the verification proved that the applet does not contain transaction errors,
performs no out of bounds operations on buffers, and never dereferences null pointers.

The results of the case study are encouraging: with an annotation overhead of about four
lines of annotations per five lines of code we found a total of 13 bugs in the eID applet, and 25
locations where transactions were not properly used.

This case study has been invaluable for us to improve the tool. A number of bugs were fixed
and small additions were made in order to support the verification of the applets. A longer term
plan has also been established to further add improvements and optimizations to the tool. In
particular, the automatic generation of open and close statements will become an important
part of the future work, as well as language and technology-specific extensions to the tool.
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B. Annotation Inference for Separation Logic
Based Verifiers1

Authors: Frédéric Vogels, Bart Jacobs, Frank Piessens and Jan Smans2

Abstract: With the years, program complexity has increased dramatically: ensuring program
correctness has become considerably more difficult with the advent of multithreading, security
has grown more prominent during the last decade, etc. As a result, static verification has become
more important than ever.

Automated verification tools exist, but they are only able to prove a limited set of properties,
such as memory safety. If we want to prove full functional correctness of a program, other more
powerful tools are available, but they generally require a lot more input from the programmer:
they often need the code to be verified to be heavily annotated.

In this paper, we attempt to combine the best of both worlds by starting off with a manual
verification tool based on separation logic for which we develop techniques to automatically
generate part of the required annotations. This approach provides more flexibility: for instance, it
makes it possible to automatically check as large a part of the program as possible for memory
errors and then manually add extra annotations only to those parts of the code where automated
tools failed and/or full correctness is actually needed.

B.1 Introduction

During the last decade, program verification has made tremendous progress. However, a key
issue hindering the adoption of verification is that a large amount of annotations is required for
tools to be able to prove programs correct, in particular if correctness involves not just memory
safety, but also program-specific properties. In this paper, we propose three annotation inference
and/or reduction techniques in the context of separation logic-based verifiers: (1) automatic
predicate folding and unfolding, (2) predicate information extraction lemmas and (3) automatic
lemma application via shape analysis. All aforementioned contributions were developed in the
context of the VeriFast program verifier in order to reduce annotation overhead for practical
examples.

VeriFast [30] is a verification tool being developed at the K.U. Leuven. It is based on
separation logic [40] and can currently be used to verify a multitude of correctness-related
properties of C and Java programs. Example usages are

• ensuring that C code does not contain any memory-related errors, such as memory leaks
and dereferencing dangling pointers;

1Appeared in: F. Vogels, B. Jacobs, F. Piessens, J. Smans. Annotation inference for separation logic based verifiers.
FMOODS 2011, volume 6722 of LNCS, pages 319–333, Heidelberg, 2011. Springer.

2Jan Smans is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).
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LOC LOAnn LoAnn/LOC
stack (C) 88 198 (18/16) 2.3
sorted binary tree (C) 125 267 (16/23) 2.1
bank example program (C) 405 127 (10/22) 0.31
chat server (C) 130 114 (20/26) 0.88
chat server (Java) 138 144 (19/28) 1.0
game server (Java) 318 225 (47/63) 0.71

Figure B.1: Some line count statistics

• checking that functions or methods satisfy contracts describing their intended semantics;

• preventing the occurrence of data races in multi-threaded code.

VeriFast heavily relies on programmer-provided annotations: this makes the tool very efficient,
but the need for annotations can make its use quite cumbersome. To give the reader an idea
of the quantity of annotations needed, we provide some quick statistics in Figure B.1: the first
column contains a count of the number of lines of actual C code. The second column expresses
the number of annotations in number of lines. The numbers between parentheses correspond
to the number of open and close statements, respectively, which will be further explained in
Section B.3.1. The third column shows the amount of annotation overhead.

We have developed three different techniques to (partially) automate verification by mechani-
zing the generation of (some of) the necessary annotations. In this paper, we describe these
three approaches in detail. We will make the distinction between two layers:

• VeriFast’s core, which requires all annotations and performs the actual verification. This
core must be as small and uncomplicated as possible, as the verification’s soundness
relies on it.

• The automation layer, which generates as large a portion of the necessary annotations as
possible, which will then in a second phase be fed to VeriFast’s core for verification.

This approach maximizes robustness: we need only trust the core and can freely experiment
with different approaches to automation without having to worry about introducing unsound
elements, since the generated annotations will still be fully verified by the core, thus catching
any errors.

In order to be able to discuss and compare our three annotation generation techniques, we
need the reader to be familiar with VeriFast, therefore we included a small tutorial (Section B.2)
which explains the basic concepts. Next, we explain our different approaches to automation
in Section B.3. We then put them side by side in Section B.4 by comparing how many of the
necessary annotations they are able to generate.

B.2 VeriFast: a quick tutorial

This section contains a quick introduction to VeriFast. It is not our intention to teach the reader
how to become proficient in using VeriFast, but rather to provide a basic understanding of certain
concepts on which VeriFast is built. A full tutorial is available at [31].
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Listing B.1: A singly linked list node in C

1 struct list { struct list* next; int value; };
2 struct list* new(struct list* n, int v)
3 //@ requires emp;
4 /*@ ensures malloc_block_list(result) &*& result ->next |-> n &*&
5 result ->value |-> v &*& result != 0 @*/
6 {
7 struct list* node = malloc( sizeof( struct list ) );
8 if ( node == 0 ) abort ();
9 node ->next = n; node ->value = v;

10 return node;
11 }

B.2.1 A singly linked list

Figure B.1 shows a struct-definition for a singly linked list node together with a function new
which creates and initializes such a node. In order to verify this function in VeriFast, we need to
provide a contract. The precondition, emp, indicates that the function does not require anything
to be able to perform its task. The postcondition is a separating conjunction (&*&) of the “heap
fragments”:

• malloc_block_list(result) means that the returned pointer will point to a malloc’ed
block of memory the size of a list. It is produced by a call to malloc and it is meant
to be eventually consumed by a matching free. Failure to do so eventually leads to an
unreachable malloc_block_list which corresponds to a memory leak.

• result->next |-> n means two things: it grants the permission to read and write to the
node’s next field, and it tells us that the next field contains the value of the argument n.
Idem for result->value |-> v.

• result != 0 guarantees that the returned pointer is not null.

If this function verifies, it will mean that it is both memory safe and functionally correct. We defer
the explanation of the separating conjunction &*& until later.

VeriFast uses symbolic execution [9] to perform verification. The precondition determines
the initial symbolic state, which in our case is empty. VeriFast then proceeds by symbolically
executing the function body.

1. malloc can either fail or succeed. In the case of list, its contract is
requires emp;
ensures result == 0 ? emp

: malloc_block_list(result) &*&
result->next |-> _ &*&
result->value |-> _;

Either it will return 0, which represents failure, and the heap is left unchanged. Otherwise,
it returns a non-null pointer to a block of memory the size of a struct list, guaranteed
by malloc_block_list(result). It also provides access to both next and value fields of
this newly created node, but does not make any promises about their values.

2. The if statement will intercept execution paths where malloc has failed and calls abort,
causing VeriFast not to consider these paths any further.

3. Next, we assign n to the next field. This operation is only allowed if we have access to this
field, which we do since the previous if statement filtered out any paths where allocation
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failed, and a successful malloc always provides the required access rights. This statement
transforms the result->next |-> _ heap fragment to result->next |-> n.

4. Assigning v to node->value works analogously.

5. Finally, we return the pointer to the node. At this point, VeriFast checks that the current exe-
cution state matches the postcondition. This is the case, which concludes the successful
verification of new.

A full explanation of the separating conjunction &*& can be found in [40]. In short, P &*& Q
means that the heap consists of two disjoint subheaps where P and Q hold, respectively. It is
used to express that blocks of memory do not overlap, and therefore changes to one object
do not influence another. Separating conjunction enables the frame rule, which allows us to
reason “locally”. It expresses the fact that if an operation behaves some way in a given heap
({P} op {Q}), it will behave the same way in an extended heap ({P &*& R} op {Q &*& R}).
For example, if we were to call malloc twice in a row, how can we be sure that it didn’t return
the same block of memory twice? We know this since, thanks to the frame rule, we get two
malloc_block_list heap fragments joined by a separating conjunction, guaranteeing us that
we are dealing with two different objects.

B.2.2 Predicates

As shown in the previous section, freely working with a single node requires carrying around
quite a bit of information. This can become tiresome, especially if one considers larger structures
with more fields whose types might be other structures. For this reason, VeriFast provides the
ability to perform abstractions using predicates [44] which make it possible to “fold” (or close, in
VeriFast terminology) multiple heap fragments into one.

Listing B.2: Predicates

1 predicate Node(struct list* n, struct list* m, int v) =
2 malloc_block_list(n) &*& n->next |-> m &*& n->value |-> v &*& n != 0;
3
4 struct list* new(struct list* n, int v)
5 //@ requires emp;
6 //@ ensures Node(result , n, v);
7 {
8 struct list* node = malloc( sizeof( struct list ) );
9 if ( node == 0 ) abort ();

10 node ->next = n; node ->value = v;
11 //@ close Node(node , n, v);
12 return node;
13 }

Figure B.2 shows the definition for the Node predicate and an updated version of the new
function. The close statement removes three heap fragments (malloc_block_list and the two
field access permissions) and replaces them by a single Node fragment, on condition that it can
ascertain that node is not 0 and the three fragments are present on the symbolic heap, otherwise
verification fails. This closing is necessary in order to have the final execution state match the
postcondition. Closing must happen last, for otherwise the field access permissions would be
hidden when they are needed to initialize the node’s fields (third line of the procedure body.) At a
later time, whenever the need arises to access one of a node’s fields, the Node fragment can be
opened up (replacing Node by the three separate heap fragments on the symbolic heap) so as
to make the field access permission available again.
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B.2.3 Recursive predicates

A linked list consists of a chain of nodes each pointing to the next. Currently, we can only express
linked lists of fixed maximum length:

p == 0 ? emp
: Node(p, q, v1) &*& (q == 0 ? emp

: Node(q, 0, v2)) // len 0-2

We can solve this problem using recursive predicates: we need to express that a list is either
empty or a node pointing to another list. Figure B.3 shows the definition for LSeg(p, q, xs),
which stands for a cycleless singly linked list segment where p points to the first node, q is the
one-past-the-end node and xs stands for the contents of this list segment.

Listing B.3: Recursive predicates

1 /*@ inductive List = Nil | Cons(int , List);
2 predicate LSeg(struct list* p, struct list* q, List Xs) =
3 p == q ? Xs == Nil
4 : Node(p,?t,?y) &*& LSeg(t,q,?Ys) &*& Xs == Cons(y,Ys); @*/
5
6 struct list* prepend(struct list* xs, int x)
7 //@ requires LSeg(xs, 0, ?Xs);
8 //@ ensures LSeg(result , 0, Cons(x, Xs));
9 {

10 struct list* n = new(xs, x);
11 //@ open Node(n, xs, x);
12 //@ close Node(n, xs, x);
13 //@ close LSeg(n, 0, Cons(x, Xs));
14 return n;
15 }

Figure B.3 also contains the definition for a prepend function. The contract fully describes
its behavior, i.e. that a new element is added in front of the list, and that the pointer passed as
argument becomes invalid; instead the returned pointer must be used.

B.2.4 Lemmas

The reader might wonder why a Node is consecutively opened and closed in Figure B.3. Let us
first examine what happens without it. When VeriFast reaches the closing of the LSeg, execution
forks due to the conditional in the LSeg predicate:

• n might be equal to 0, in which case xs must be Nil instead of Cons(x, Xs), so that closing
fails. This needs to be prevented.

• n could also be a non-null pointer: the Node and original LSeg get merged into one larger
LSeg, which is exactly what we want.

Therefore, we need to inform VeriFast of the fact that n cannot be equal to 0. This fact is hidden
within the Node predicate; opening it exposes it to VeriFast. After this we can immediately close
it again in order to be able to merge it with the LSeg heap fragment.

The need to prove that a pointer is not null occurs often, and given the fact that an open/close
pair is not very informative, it may be advisable to make use of a lemma, making our intentions
clearer, as shown in Figure B.4. In Section B.3, we will encounter situations where lemmas are
indispensable if we are to work with recursive data structures.
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Listing B.4: The NotNull lemma

1 /*@ lemma void NotNull(struct list* p)
2 requires Node(p, ?pn, ?pv);
3 ensures Node(p, pn, pv) &*& p != 0;
4 {
5 open Node(p, pn , pv); close Node(p, pn, pv);
6 }
7 @*/
8 struct list* prepend(struct list* xs, int x)
9 //@ requires LSeg(xs, 0, ?Xs);

10 //@ ensures LSeg(result , 0, Cons(x, Xs));
11 {
12 struct list* n = new(xs, x);
13 //@ NotNull(n);
14 //@ close LSeg(n, 0, Cons(x, Xs));
15 return n;
16 }

B.3 Automation techniques

We have implemented three automation techniques which we discuss in the following sections.
For this, we need a running example: Figure B.6 contains a fully annotated list-copying function,
for which we will try to automatically infer as many of the required annotations as possible.

In our work, we have focused on verifying memory safety; automation for verifying functional
properties is future work. Therefore, we simplify the Node and LSeg predicates we defined earlier
by having the predicates throw away the data-related information, as shown in Figure B.5.

Listing B.5: Simplified Node and LSeg predicates

1 predicate Node(struct list* P, struct list* Q) =
2 P != 0 &*& malloc_block_list(P) &*& P->next |-> Q &*& P->value |-> ?v;
3
4 predicate LSeg(struct list* P, struct list* Q) =
5 P == Q ? emp : Node(P, ?R) &*& LSeg(R, Q);

While it is not strictly necessary to understand the code in Figure B.6, we choose to clarify
some key points:

• The new() function produces a new Node(result, 0) and always succeeds. It is just
another function defined in terms of malloc and aborts on allocation failure (comparable
to Figure B.2).

• NoCycle, Distinct, AppendLSeg and AppendNode are lemmas whose contracts are shown
in Figure B.7.

The copy function comprises 12 statements containing actual C code, while the annotations
consist of 31 statements, not counting the lemmas since these can be shared by multiple function
definitions. We now proceed with a discussion of how to generate some of these annotations
automatically.

B.3.1 Auto-open and auto-close

As can be seen in the examples, a lot of annotations consist of opening and closing predicates.
This is generally true for any program: the values between parentheses in Figure B.1 indicate
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Listing B.6: Copying linked lists

1 struct list* copy(struct list* xs)
2 //@ requires LSeg(xs, 0);
3 //@ ensures LSeg(xs, 0) &*& LSeg(result , 0);
4 {
5 if ( xs == 0 ) {
6 //@ close LSeg(0, 0); // a
7 return 0; }
8 else {
9 struct list* ys = new();

10 //@ open LSeg(xs, 0);
11 //@ open Node(xs, _); // a
12 //@ open Node(ys, 0); // a
13 ys ->value = xs->value;
14 struct list *p = xs->next , *q = ys;
15 //@ close Node(ys, 0); // a
16 //@ close Node(xs, p); // a
17 //@ NoCycle(xs , p);
18 //@ close LSeg(p, p); // a
19 //@ close LSeg(xs, p); // a
20 //@ close LSeg(ys, q); // a
21 while ( p != 0 )
22 //@ invariant LSeg(xs,p) &*& LSeg(p,0) &*& LSeg(ys,q) &*& Node(q,0);
23 {
24 //@ struct list *oldp = p, *oldq = q;
25 struct list* next = new();
26 //@ Distinct(q, next);
27 //@ open Node(q, 0); // a
28 q->next = next; q = q->next;
29 //@ close Node(oldq , q); // a
30 //@ open LSeg(p, 0);
31 //@ assert Node(p, ?pn);
32 //@ NoCycle(p, pn);
33 //@ open Node(p, _); // a
34 //@ open Node(q, 0); // a
35 q->value = p->value; p = p->next;
36 //@ close Node(q, 0); // a
37 //@ close Node(oldp , p); // a
38 //@ AppendLSeg(xs , oldp); AppendNode(ys, oldq);
39 }
40 //@ open LSeg(p, 0); // a
41 //@ NotNull(q); // b
42 //@ close LSeg(0, 0); // a
43 //@ AppendLSeg(ys , q);
44 //@ open LSeg(0, 0); // a
45 return ys;
46 }
47 }

how many open and close statements respectively were necessary for the verification of other
larger programs.

These annotations seem to be ideal candidates for automation: whenever the execution of a
statement fails, the verifier could take a look at the current execution state and try opening or
closing predicates to find out whether the right heap fragments are produced.

For example, assume we are reading from the next field of a variable x, which requires
a heap fragment matching x->next |-> v. However, only Node(x, y) is available. Without
automation, verification would fail, but instead, the verifier could try opening Node(x, y) and
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Listing B.7: Lemmas

1 lemma void NoCycle(struct list* P, struct list* Q)
2 requires Node(P, Q) &*& LSeg(Q, 0);
3 ensures Node(P, Q) &*& LSeg(Q, 0) &*& P != Q;
4 lemma void Distinct(struct list* P, struct list* Q)
5 requires Node(P, ?PN) &*& Node(Q, ?QN);
6 ensures Node(P, PN) &*& Node(Q, QN) &*& P != Q;
7 lemma void AppendLSeg(struct list* P, struct list* Q)
8 requires LSeg(P, Q) &*& Node(Q, ?R) &*& Q != R &*& LSeg(R, 0);
9 ensures LSeg(P, R) &*& LSeg(R, 0);

10 lemma void AppendNode(struct list* P, struct list* Q)
11 requires LSeg(P, Q) &*& Node(Q, ?R) &*& Node(R, ?S);
12 ensures LSeg(P, R) &*& Node(R, S);

find out that this results in the required heap fragment. Of course, this process could go on
indefinitely given that predicates can be recursively defined. Therefore, some sort of heuristic is
needed to guide the search.

We have added support for automatic opening and closing of predicates [44] to VeriFast.
Without delving too much into technical details, VeriFast keeps a directed graph whose nodes
are predicates and whose arcs indicate how predicates are related to each other. For example,
there exists an arc from LSeg to Node meaning that opening an LSeg yields a Node. However, this
depends on whether or not the LSeg does represent the empty list. To express this dependency,
we label the arcs with the required conditions. These same conditions can be used to encode
the relationships between the arguments of both predicates. For the predicate definitions from
Figure B.5, the graph would contain the following:

a 6= b
a = p p = x

LSeg(a, b) −→ Node(p, q) −→ x→ next 7→ y

When, during verification, some operation requires the presence of a Node(p, q) heap fragment
but which is missing, two possible solutions are considered: we can either attempt to perform an
auto-open on an LSeg(p, b) for which we know that p != b, or try to close Node(p, q) if there
happens to be a p->next |-> ? on the current heap.

Using this technique yields a considerable decrease in the amount of necessary annotations:
each open or close indicated by // a is inferred automatically by VeriFast. Out of the 31
annotation statements, 17 can be generated, which is more than a 50% reduction.

B.3.2 Autolemmas

We now turn our attention to another part of the annotations, namely the lemmas. On the one
hand, we have the lemma definitions. For the moment, we have made no efforts to automate
this aspect as lemmas need only be defined once, meaning that automatic generation would
only yield a limited reduction in annotations.

On the other hand we have the lemma applications, which is where our focus lies. Currently,
we have only implemented one very specific and admittedly somewhat limited way to automate
lemma application. While automatic opening and closing of predicates is only done when the
need arises, VeriFast will try to apply all lemmas regarding a predicate P each time P is produced,
in an attempt to accumulate as much extra information as possible. This immediately gives rise
to some obvious limitations:
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• It can become quite inefficient: there could be many lemmas to try out and many matches
are possible. For example, imagine a lemma operates on a single Node, then it can be
applied to every Node on the heap, so it is linear with the number of Nodes on the heap.
If however it operates on two Nodes, matching becomes quadratic, etc. For this reason,
two limitations are imposed: lemmas need to be explicitly declared to qualify for automatic
application, and they may only depend on one heap fragment.

• Applying lemmas can modify the execution state so that it becomes unusable. For example,
if the AppendLSeg lemma were applied indiscriminately, Nodes would be absorbed by LSegs,
effectively throwing away potentially crucial information (in this case, we “forget” that the list
segment has length 1.) To prevent this, autolemmas are not allowed to modify the symbolic
state, but instead may only extend it with extra information.

Given these limitations, in the case of our example, only one lemma qualifies for automation:
NotNull. Thus, every time a Node(p, q) heap fragment is added to the heap, be it by closing a
Node or opening an LSeg or any other way, VeriFast will immediately infer that p != 0. Since we
only needed to apply this lemma once, we decrease the number of annotations by just one line
(Figure B.6, indicated by // b).

B.3.3 Automatic shape analysis

Ideally, we would like to get rid of all annotations and have the verifier just do its job without any
kind of interaction from the programmer. However, as mentioned before, the verifier cannot just
guess what behavior a piece of code is meant to exhibit, so that it can only check for things
which are program-independent bugs, such as data races, dangling pointers, etc.

Our third approach for reducing annotations focuses solely on shape analysis [17], i.e. it
is limited to checking for memory leaks and invalid pointers dereferences. Fortunately, this
limitation is counterbalanced by the fact that it is potentially able to automatically generate all
necessary annotations for certain functions, i.e. the postcondition, loop invariants, etc.

In order to verify a function by applying shape analysis, we need to determine the initial
program state. The simplest way to achieve this is to require the programmer to make his
intentions clear by providing preconditions. Even though it appears to be a concession, it has
its advantages. Consider the following: the function length requires a list, but last requires
a non-empty list. How does the verifier make this distinction? If length contains a bug which
makes it fail to verify on empty lists, should the verifier just deduce it is not meant to work on
empty lists?

We could have the verifier assume that the buggy length function is in fact correct but not
supposed to work on empty lists. The verification is still sound: no memory-related errors will
occur. A downside to this approach is that the length function will probably be used elsewhere
in the program, and the unnecessary condition of non-emptiness will propagate. At some point,
verification will probably fail, but far from the actual location of the bug. Requiring contracts thus
puts barriers on how far a bug’s influence can reach.

One could make a similar case for the postconditions: shape analysis performs symbolic
execution and hence ends up with the final program state. If the programmer provides a
postcondition, it can be matched against this final state. This too will prevent a bug’s influence
from spreading.

Our implementation of shape analysis is based on the approach proposed by Distefano et al.
[17]. The idea is simple and very similar to what has been explained earlier in Section B.3.1:
during the symbolic execution of a function, it will open and close the predicates as necessary
to satisfy the precondition of the operations it encounters. However, the analysis has a more
thorough understanding of the lemmas: it will know in what circumstances they need to be
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without abstraction with abstraction
Node(p’, p) &*& LSeg(p, 0) LSeg(p’, p) &*& LSeg(p, 0)

Node(p’, p1) &*& Node(p1, p) &*& LSeg(p, 0) LSeg(p’, p) &*& LSeg(p, 0)

Figure B.2: Finding a fixed point

applied. A good example of this is the inference of the loop invariant where shape analysis uses
the lemmas to abstract the state, which is necessary to prevent the symbolic heap from growing
indefinitely while looking for a fixpoint. Consider the following pseudocode:

p′ := p;while p 6= 0 do p := p→next end

Initially, the symbolic heap contains LSeg(p, 0). To enter the loop, p needs to be non-null, hence
it is a non-empty list and can be opened up to Node(p’, p1) &*& LSeg(p1, 0). During the next
iteration, p1 can be null (the loop ends) or non-null (a second node). Thus, every iteration adds
the possibility of an extra node. This way, we’ll never find a fixed point. Performing abstraction
will fold nodes back into LSegs. The difference is shown in Figure B.2. One might wonder why
the abstraction doesn’t also merge both LSegs into a single LSeg. The reason for this is that
the local variable p points to the start of the second LSeg: folding would throw away information
deemed important.

For our purposes, the algorithms defined in [17] need to be extended so that apart from the
verification results of a piece of code and final program states which determine the postcondition,
they also generate the necessary annotations to be added to the verified code. This way, the
results can be checked by VeriFast, keeping our trusted core to a minimum size (i.e. we do not
need to trust the implementation of the shape analysis tool), and extra annotations can be added
later on if we wish to prove properties other than memory safety.

For our example, shape analysis is able to deduce all open and close annotations, the
lemma applications, the loop invariant and the postcondition (in our implementation, we chose
to require only the precondition and we manually check that the generated postcondition is as
intended). Hence, the number of necessary annotations for Figure B.6 is reduced to 1, namely
the precondition.

B.4 Comparison

In order to get a better idea of by how much we managed to decrease the number of annotations,
we wrote a number of list manipulation functions. There are four versions of the code:

(A) A version with all annotations present.

(B) An adaptation of (A) where we enabled auto-open and auto-close.

(C) A version where we take (B) and make NotNull an autolemma (Section B.3.2).

(D) Finally, a minimal version with only the required annotations to make our shape analysis
implementation (Section B.3.3) able to verify the code.

Figure B.3 shows how the annotation line counts relate to each other.
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C-code #code A B C D lemma A B C
length 10 12 9 9 1 Distinct 9 7 7
sum 11 11 7 7 1 NotNull 7 6 6
destroy 9 6 4 4 1 AppendNode 19 16 16
copy 23 32 15 14 1 AppendLSeg 27 19 18
reverse 12 9 5 5 1 AppendNil 9 7 6
drop_last 28 28 13 13 1 NoCycle 11 10 9
prepend 7 5 3 3 1
append 13 20 11 11 1

#code A B C D
total 113 205 132 128 8

Figure B.3: Annotation line count comparison

B.5 Related work

Smallfoot [9] is a verification tool based on separation logic which given pre- and post-conditions
and loop invariants can fully automatically perform shape analysis. It has been extended
for greater automation [52], for termination proofs [11, 16], fine-grained concurrency [13] and
lock-based concurrency [24].

jStar [18] is an another automatic separation logic based verification tool which targets Java.
One only needs to provide the pre- and post-conditions for each method, after which it attempts
to verify it without extra help. It is able to infer loop invariants, for which it uses a more generalized
version of the approach described by Distefano et al. [17]. This is achieved by allowing the
definition of user-defined rules (comparable to our lemmas) which are then used by the tool to
perform abstraction on the heap state during the fixed point computation.

A third verification tool based on separation logic is SPACEINVADER [17, 52], which performs
shape analysis on C programs. ABDUCTOR, an extension of this tool, uses a generalized form of
abduction [12], which gives it the ability not only to infer loop invariants and postconditions, but
also preconditions.

Other tools which don’t rely on separation logic are for example KeY [1] (dynamic logic [26]),
Spec] [6], Chalice [34], Dafny [35], and VCC [15], the latter three being based on Boogie2
(verification condition generation [7, 33]). Still other alternatives to separation logic are implicit
dynamic frames [50] and matching logic [49], the latter being an approach where specifications
are expressed using patterns which are matched against program configurations.

B.6 Conclusion

We can divide verifiers in two categories.

• Fully automatic verifiers which are able to determine whether code satisfies certain condi-
tions without any help of the programmer. Unfortunately, this ease of use comes with
a downside: these tools can only check certain properties for certain patterns of code.
More ambitious verifications such as ensuring full functional correctness remains out of
the scope of these automatic verifiers, since correctness only makes sense with respect to
a specification, which needs to be provided by the programmer.

• Non-automatic tools are able to perform more thorough verifications (such as full functional
correctness), but these require help from the programmer.
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In practice, given a large body of code, it is often sufficient to check only automatically provable
properties except for a small section of critical code, where a proof of full functional correctness
is necessary. Neither of the above two options is then ideal. Our proposed solution is to combine
the best of both worlds by using the following verification framework: at the base lies the non-
automatic “core” verifier (in our case VeriFast), which will be responsible for performing the
actual verification. To achieve this, it requires code to be fully annotated, but in return, it has the
potential of checking for a wide variety of properties. On this base we build an automation layer,
consisting of specialized tools able to automatically verify code for specific properties. Instead of
just trusting the results of these tools, we require them to produce annotations understood by
the core verifier.

A first advantage is that only the core verifier needs to be trusted. Indeed, in the end, all
automatically produced annotations are fed back to the core verifier, so that unsoundnesses
introduced by buggy automation tools will be caught.

A second advantage is that it allows us to choose which properties are checked for which parts
of the code. For example, in order to verify a given program, we would start with unannotated
code, on which we would apply an automatic verification tool, such as the shape analysis tool
discussed in Section B.3.3. This produces a number of annotations, which are fed to the core
verifier. If verification succeeds, we know the application contains no memory-related errors.

Now consider the case where a certain function foo appears to be troublesome and shape
analysis fails to verify it, which could mean that all other parts of the code which call this function
also remain unverified. In order to deal with this problem the programmer can manually add the
necessary annotations for foo, let the core verifier check them, and then re-apply the shape
analysis tool, so that it can proceed with the rest of the code.

After the whole program has been proved memory-safe, one can proceed with the critical
parts of the code where a proof of full functional correct is required. Thus, it makes an itera-
tive incremental approach to verification possible where manually added annotations aid the
automatic tools at performing their task.

In this paper, we presented preliminary experience gained in our work in progress towards
this goal. Future work includes gaining additional experience with larger programs, gaining
experience with the usability of an iterative infer-annotate process, and improving the power of
the inference algorithm.
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C. Additional information on packages of the
integrated POPS scenario

For each package of the integrated POPS scenario, we give in this appendix some additional
details on its content: the number of classes and interfaces defined, the number of methods
defined in each class/interface, the visibility of these methods from outside of the package in
which they are defined, and finally the number of jump targets in their bytecode. Actually, a
jump target corresponds to a (bytecode) instruction of a method that is directly reachable by two
different control flow paths.

C.1 The newepurse.cap package

The newepurse.cap package contains 2 interfaces and 3 classes:

• IEPurseServiceCredit interface inherits Shareable and defines 2 methods:

Method #param. Visible Implem. #jump targets
charge 1 X
transaction 1 X

• IEPurseServiceDebit interface inherits Shareable and defines 1 method:

Method #param. Visible Implem. #jump targets
debit 1 X

• EPurseServiceCredit class that implements IEPurseServiceCredit and the 3 following
methods:

Method #param. Visible Implem. #jump targets
constructor 1 X 2
charge 1 X X 12
transaction 1 X X 12

• EPurseServiceDebit class that implements IEPurseServiceDebit and the 2 following
methods:

Method #param. Visible Implem. #jump targets
constructor 1 X 2
debit 1 X X 12

• NewEPurseApplet class that extends Applet and implements the 12 following methods:

D6.6: Development-Time and On-Device Interplay
version 1.2 | page 78/98



Method #param. Visible Implem. #jump targets
constructor 0 X 3
install 3 X X 3
process 1 X X 18
getBalance 1 X 7
credit 1 X 10
debit(APDU) 1 X 8
debit(short) 1 X X 4
transaction 1 X X 4
charge 1 X X 4
setLimit 1 X 10
addClientApplet 1 X 26
searchClientAID 1 X X 6
getClientLimit 1 X X 1
getShareableInterfaceObject 2 X X 13

C.2 The newjticket.cap package

The newjticket.cap package contains 1 class:

• NewJTicketApplet class that extends Applet and implements the 7 following methods:

Method #param. Visible Implem. #jump targets
constructor 0 X X 3
install 3 X X 3
process 1 X X 12
getCounter 1 X 5
useTicket 1 X 6
buyTickets 1 X 12
setEPurseAID 1 X 12

C.3 The neweidapplet.cap package

The neweidapplet.cap package contains 1 interface and 6 classes:

• INewEidPoints interface inherits Shareable and defines 1 method:

Method #param. Visible Implem. #jump targets
sharePoints 1 X

• NewEidPoints class that implements inherits INewEidPoints and defines 2 methods:

Method #param. Visible Implem. #jump targets
constructor 0 X X 2
sharePoints 1 X X 1

• NewEidCard class that extends Applet and implements the 50 following methods:
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Method #param. Visible Implem. #jump targets
install 3 X X 2
initializeFileSystem 0 X 16
eraseBinary 2 X 14
updateBinary 2 X 21
fileAccessAllowed 1 X 12
getCardData 2 X 18
readBinary 2 X 23
activateFile 2 X 12
clear 0 X 6
initializeEmptyLargeFiles 0 X 7
initializeKeyPairs 0 X 11
selectByFileIdentifier 2 X 20
selectByPath 2 X 22
initializePins 2 X 9
constructor 0 X X 20
select 0 X X 2
deselect 0 X X 2
process 1 X X 45
verifyPin 2 X 16
checkPin 2 X 11
changePin 2 X 13
userChangePin 2 X 11
administratorChangePin 2 X 21
isNewPinFormattedCorrectly 2 X 15
isNewPinCorrectValue 1 X 10
logOff 2 X 12
unblock 2 X 8
prepareForSignature 2 X 22
generateSignature 2 X 34
generatePkcs1Md5Signature 2 X 18
generatePkcs1Sha1Signature 2 X 18
generatePkcs1Signature 2 X 18
preparePkcs1ClearText 3 X 9
generateKeyPair 1 X 22
getPublicKey 1 X 53
putPublicKey 2 X 2
eraseKey 2 X 6
activateKey 2 X 4
deactivateKey 2 X 2
internalAuthenticate 2 X 28
getResponse 2 X 13
getChallenge 2 X 12
selectFile 2 X 6
setPreviousApduType 1 X 1
getPreviousApduType 0 X 1
setSignatureType 1 X 1
getSignatureType 0 X 1
deactivateFile 2 X 12
getShareableInterfaceObject 2 X X 4
askForCharge 0 X 6

• File class that implements the 4 following methods:

Method #param. Visible Implem. #jump targets
constructor 1 X X 2
getFileID 0 X X 1
setActive 1 X X 1
isActive 0 X X 1

• ElementaryFile class that extends File and implements the 10 following methods:
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Method #param. Visible Implem. #jump targets
constructor 3 X X 3
constructor 3 X X 3
getData 0 X X 4
getCurrentSize 0 X X 4
getMaxSize 0 X X 1
eraseData 1 X X 2
updateData 4 X X 2
getFileID 0 X X 1
setActive 1 X X 2
isActive 0 X X 2

• DedicatedFile class that extends File and implements the 8 following methods:

Method #param. Visible Implem. #jump targets
constructor 1 X X 2
constructor 2 X X 3
getParent 0 X X 1
addSibling 1 X X 3
getSibling 1 X X 7
getFileID 0 X X 1
setActive 1 X X 1
isActive 0 X X 1

• MasterFile class that extends DedicatedFile and implements the 7 following methods:

Method #param. Visible Implem. #jump targets
constructor 0 X X 2
getParent 0 X X 1
addSibling 1 X X 2
getSibling 1 X X 1
getFileID 0 X X 1
setActive 1 X X 1
isActive 0 X X 2

C.4 The newmypackage.cap package

The newmypackage.cap package contains 1 interface and 6 classes:

• INewMyAppletPoints interface inherits Shareable and defines 1 method:

Method #param. Visible Implem. #jump targets
sharePoints 1 X

• NewMyAppletPoints class that implements inherits INewMyAppletPoints and defines 2
methods:

Method #param. Visible Implem. #jump targets
constructor 0 X X 2
sharePoints 1 X X 1

• NewMyApplet class that extends Applet and implements the 14 following methods:
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Method #param. Visible Implem. #jump targets
constructor 5 X 7
install 3 X X 10
process 1 X X 17
processSelectCmd 1 X 19
checkIncomingData 3 X 9
processPutData 1 X 10
getOptionalDataIndex 1 X 2
processAppendRecord 1 X 38
processDeleteRecord 1 X 33
processReadRecord 1 X 20
sh 1 X 1
askForSharingPoints 0 X 6
askForPayment 0 X 8
getShareableInterfaceObject 2 X X 4
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D. Structure of on-device repositories of me-
thods footprints for the implementation of
the global policy model

The structure of methods footprints repositories managed on-device is given in Figure D.1 and
detailed in the remaining part of this section.

ondevice_footprint_repositories {
u1 package_footprints_size;
ondevice_package_footprint package_footprints[];

}

ondevice_package_footprint {
u1 package_index;
u2 class_footprints_size;
ondevice_class_footprint class_footprints[];

}

ondevice_class_footprint {
u2 classref;
u1 class_token;
u2 method_footprints_size;
ondevice_method_footprint method_footprints[];

}

ondevice_method_footprint {
u1 bitfield;
u1 method_token; /* present according to bitfield */
u2 method_offset; /* present according to bitfield */
footprint_t complete_footprint;

}

Figure D.1: Data structures of footprints repositories managed on-device for the global policy model.

The ondevice_footprint_repositories structure describes a set of binary repositories of
methods footprints:

• package_footprints_size represents the size in bytes of the package_footprints field;

• package_footprints contains a ondevice_package_footprint entry for each package
currently installed on the system;

The ondevice_package_footprint structure describes the footprints attached to all methods
of all classes (and all interfaces) of an installed package:

• package_index contains the internal package index of the current package;
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• class_footprints_size represents the size in bytes of the class_footprints field;

• class_footprints maps to each class (or interface) of the current package the footprints
of its methods;

The ondevice_class_footprint structure is used to describe the methods footprints of an
installed class or interface:

• classref contains the location (i.e.the offset) in the Class Component (c.f.JCVM speci-
fications) of the info structure corresponding to a class (or an interface) defined in this
package;

• class_token represents the class token of the current class (or interface), or 0xFF if the
current class (or interface) has no token assigned;

• method_footprints_size represents the size in bytes of the method_footprints field;

• method_footprints maps to each method of the current class (or interface) its footprint;

The ondevice_method_footprint structure describes the footprint of a method:

• bitfield is the mask of modifiers coming from the GPCC, with the additional modifier
indicating which repository this complete_footprint belongs to:

Mask 0x01
Value 0x00 repository of verified footprints (repository R in the model, Sec-

tion 5.6.3 of the deliverable D6.3)
0x01 repository of believed footprints (repository Rtmp in the model, Sec-

tion 5.6.3 of the deliverable D6.3)

• method_token represents the static/virtual/interface token of this method if the method is
visible, according to bitfield;

• method_offset represents a byte offset into the info item of the Method Component
(c.f.JCVM specifications) if the method is implemented (i.e.not an abstract method or a
method definition in an interface), according to bitfield;

• complete_footprint contains the binary encoded footprint of the current method.
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E. Structure of on-device repositories of me-
thods signatures for the implementation
of the non-interference model

The structure of methods signatures repositories managed on-device is given in Figure E.1 and
detailed in the remaining part of this section.

ondevice_signature_repositories {
dataflow_t dataflow;
u1 package_signatures_size;
ondevice_package_signature package_signatures[];

}

ondevice_package_signature {
u1 package_index;
u2 class_signatures_size;
ondevice_class_signature class_signatures[];

}

ondevice_class_signature {
u2 classref;
u1 class_token;
u2 method_signatures_size;
ondevice_method_signature method_signatures[];

}

ondevice_method_signature {
u1 bitfield;
u1 method_token; /* present according to bitfield */
u2 method_offset; /* present according to bitfield */
u2 signature_size;
signature_t complete_signature;

}

Figure E.1: Data structures of signatures repositories managed on-device for the non-interference model.

The ondevice_signature_repositories structure describes a set of binary repositories of
signatures:

• dataflow_t is a two dimensional bit array where each cell bit contains the secret flow policy
from one security domain to another (a bit set to 1 means the secret flow is permitted)
(Section 6.3.1 of the deliverable D6.3);

• package_signatures_size represents the size in bytes of the package_signatures field;

• package_signatures contains a ondevice_package_signature entry for each package
installed on the system.
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The ondevice_package_signature structure describes the signatures attached to all me-
thods of all classes (and all interfaces) of an installed package:

• package_index contains the internal package index of the current package;

• class_signatures_size represents the size in bytes of the class_signatures field;

• class_signatures maps to each class (or interface) of the current package the signatures
of its methods.

The ondevice_class_signature structure is used to describe the methods signatures of a
class or an interface:

• classref contains the location (i.e.the offset) in the Class Component (c.f.JCVM speci-
fications) of the info structure corresponding to a class (or an interface) defined in this
package;

• class_token represents the class token of the current class (or interface), or 0xFF if the
current class (or interface) has no token assigned;

• method_signatures_size represents the size in bytes of the method_signatures field;

• method_signatures maps to each method of the current class (or interface) its signature.

The ondevice_method_signature structure describes the signature of a method:

• bitfield is mask of modifiers used with a method with the following meaning:

Mask 0x80 0x40 0x20
Value 0x80 is visible 0x40 is implemented 0x20 is static

0x00 is not visible 0x00 is abstract 0x00 is not static

Mask 0x01
Value 0x00 repository of verified signatures

0x01 repository of believed signatures1

• method_token represents the static method token or virtual method token or interface
method token of this method if the method is visible according to bitfield;

• method_offset represents a byte offset into the info item of the Method Component
(c.f.JCVM specifications) if the method is implemented (i.e.not an abstract method or a
method definition in an interface) according to bitfield;

• signature_size contains the size in bytes of the complete_signature field;

• complete_signature contains the byte encoded signature of the current method where
each byte corresponds to a flow relation between two abstract entities (Section 6.1.2 of
the deliverable D6.3).
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F. SxC for the OSGi Platforms

F.1 Introduction

The Open Services Gateway Initiative (OSGi) framework [42, 5] is one of the most flexible
solutions for the deployment of pervasive services in home, office, or automobile environments
[25, 32, 47]. OSGi-compatible implementations constitute the backbone of many recent pro-
posals for embedded systems [8] or other industry-based services [45]. The OSGi services
are also the basic building blocks for service mash-ups extending the classical “smart homes”
scenarios to richer settings [39].

In a nutshell, the OSGi framework redefines the modular system of Java by introducing
bundles: JAR files enhanced with specific metadata. The services layer connects bundles in
a dynamic way with a publish-find-bind model for Java objects. An OSGi-based system has
several advantages over the traditional JAR modules. First, OSGi provides a robust integrated
environment where bundles can be published and exported to be used by other bundles. Second,
OSGi provides versioning of bundles for every new deployment and maintains the bundle
lifecycles. And third, the bundles can be updated dynamically at run time without restarting the
system and seamlessly to other bundles.

As a result, an OSGi platform is expected to be highly dynamic. All pervasive and mash-up
applications expect that bundles can be installed, updated or removed at any time depending on
business needs.

From a security perspective, the possibility of bundle interactions is a threat for bundle owners.
Since bundles can contain sensitive data or activate sensitive operations (such as locking doors
and windows of somebody’s house), it is important to ensure that the security policy of each
bundle owner is respected by other bundles. However, such aspects have been only partially
investigated.

How do we make sure that one’s services are invoked by one’s authorized siblings? A simple
solution is to rely on service-to-service authentication to identify the services and then interleave
functional and security logic into bundles, for example, by using aspect-oriented programming
[47]. However, this decreases the benefits of using a common platform for service deployment
and significantly hinders evolution and dynamicity: any change to the security policy would
require redeployment of the bundle (even if its functionalities are unchanged). Vice versa, any
changes in the bundle’s code would require redeployment of security as well.

Our solution is to use the Security-by-Contract methodology (SxC) [21, 20] for load time
security verification in order to separate security and the business logic while achieving a
sufficient protection of applications among themselves.
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F.2 The SxC Architecture

We assume at least high-level understanding of the main notions of the OSGi platform such
as bundles (the OSGi components made by developers), services (plain old Java objects
connecting bundles in a dynamic fashion by the means of publish-find-bind model), lifecycle
API (the API to install, start, stop, update, and uninstall bundles) and modules – the layer that
defines how a bundle can import and export code.

The SxC framework consists of two main components: the ClaimExtractor and the PolicyChecker.
The verification workflow is described on Figure F.1.

Informally, the SxC process starts when a new bundle B is loaded. The ClaimExtractor
component then accesses the manifest file, retrieves the information about imported and exported
packages and obtains the bundle contract. Then the ClaimExtractor reads the permissions.perm
file, which contains local bundle permissions, extracts permissions requested by the bundle B
and related to services retrieval, packages importing, requirements of bundles, etc, and combines
this information into the overall “security claims and needs” of the bundle. Then the PolicyChecker
component receives the result from the ClaimExtractor and matches it with the security policy
of the platform, that aggregates the security policies of all the installed bundles, and with the
functional state of the platform (installed bundles, running services, etc). If the PolicyChecker
failed on either of the checks, the bundle is removed from the platform. Otherwise, it is installed
and the security policy of the platform is updated by including the security requirements of B.

Figure F.1: SxC Workflow

When a bundle is removed we do not run the SxC checks, as only the functional requirements
can fail in this case and a bundle is free to define its actions in case its functional requirements
will fail in the future. It will receive synchronously a notification about the removal of a necessary
service or an arrival of a rival bundle, and it’s up to the bundle provider to decide what to do.

The SxC checks will be run in case of bundle code update or bundle policy update. These
checks, however, are variations of the installation scenario. Thus in the sequel we will focus on
only the installation scenario as the most representative one.

In terms of technical realization, the SxC steps can be easily integrated with the OSGi
framework. The key requirement is getting the correct and up-to date information about the
state of the platform and being able to access the received bundle before it is deployed on the
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Provider Requirement
securechange.eu Access to ’eu.securechange.homes.feed.gateway.FeedBundleService’ is

allowed only for bundles signed by securechange.eu provider
example.com Access to ’com.example.FeedServiceBundle’ is allowed only for bundles

signed by example.com provider
example.com Only bundles signed by example.com can import the package containing

’com.example.FeedService’
example.com Access to ’com.example.FeedHappyFarmerService’ service can be

granted only for bundles signed by facebook.com or by example.com
facebook.com -

Table F.1: The running example policies

platform. The SxC framework itself can be a bundle, provided it can access the service registry,
the framework policy file, the lifecycle layer, etc) and the manifest file and permissions.perm file
of bundles being loaded on the platform.

F.2.1 The Running Example

We consider as a case study an OSGi platform deployed as a service gateway in a smart home.
Let us consider Alice, the smart home resident, that can install untrusted bundles on the OSGi
platform. The owner of the platform is a telecom provider Telefonica, that wants to avoid security
problems, as otherwise Alice will call the provider hotline and might consider it liable for any
problem.

Alice can download bundles for entertainment (news RSS feeds, media bundles from TV pro-
viders) or even bundles with traditional Internet content (like Facebook or Twitter), as nowadays
new TV sets can be used for all these purposes. The interested reader can refer to [28] for more
details on the news feed scenario which we also consider in the current report. In the running
scenario we have used fictional names, but they give an idea of realistic bundle interactions and
possible policies regarding these interactions.

Alice wants to be kept up to date on financial news. She downloads and installs the
bundle ’eu.securechange.homes.feed.gateway.impl’, which can provide her an interface with a
series of news feeds, including some premium subscriptions. This bundle includes a service
’eu.securechange.homes.feed.gateway.FeedBundleService’ that retrieves updates from the news
feeds. However, Alice later adds another news feed provider and installs ’com.exampe.FeedServiceBundle’,
that also provides the service for feed retrieval ’com.example.FeedService’ and the service
’com.example.FeedHappyFarmerService ’ that allows Alice to receive regular updates of game
events from her Happy Farm account on facebook.com.

The bundle providers want to ensure that their security policies related to bundles and
services usage are enforced on the Alice’s platform. Their requirements are listed in Table F.1.
We see that for news feed services usage the providers securechange.eu and example.com
want to deploy a classic same origin policy, as they do not want to share the sensitive news feed
information. Instead, for its Happy Farm service the example.com provider wants to share also
with bundles coming from the facebook.com provider.

In the sequel we will refer to the securechange.eu provider as SC.eu provider, to the
’eu.securechange.homes.feed.gateway.impl’ as bundle A and to the service ’eu.securechange.homes.-
feed.gateway.FeedBundleService’ as service SA. Correspondingly, we will denote example.com
provider as Ex.com provider, its bundle ’com.example.FeedServiceBundle’ we will denote
as bundle B, service ’com.example.FeedService’ we will denote as service SB and service
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’com.example.FeedHappyFarmerService’ we will denote as Sbf . Finally, facebook.com we
will refer to as FB.com provider, Facebook bundle will be referred to as F bundle, package
’com.facebook.FarmerPackage’ as PF and service ’com.facebook.FarmerService’ as SF . In
the examples we assume the default version of bundles and packages 0.0.0, unless specified
otherwise.

The OSGi platform at Alice’s smart home has to ensure that the requirements of each
provider are respected. We will discuss in Section F.3.1 how the OSGi platform itself can enforce
the requirements of the providers SC.eu and Ex.com and why this approach is not satisfactory.
We will also demonstrate that there can exist similar requirements of bundle providers that
cannot be enforced by the OSGi platform at all. However, prior to this discussion we need to
introduce more details about the OSGi technology itself.

F.3 An OSGi Technology Overview

The current section is dedicated to the OSGi platform (v. 4.3 [42]) details relevant to the running
scenario. An OSGi bundle is a JAR file enhanced by specific meta-data. A bundle includes
the manifest.mf file (manifest file in the sequel) containing the necessary OSGi meta-data: the
symbolic name of the bundle, its version, the dependencies and the provided resources. Some
packages of a bundle can be exported (accessible for other bundles on the platform). A bundle
also typically includes an activator (used for bootstrapping when the bundle is started) and a file
with security permissions requested by the developer).

The OSGi specification defines manifest headers used by developers to describe a bundle,
some of them are:
• Export-Package contains a list of exported packages.
• Import-Package declares the imported packages.
• Provided-Capability specifies a set of provided capabilities.
• Require-Bundle specifies that all exported packages from another bundle must be imported.

The OSGi system maintains the evolving lifecycles of bundles. A bundle must first be
installed. It can be resolved when all its dependencies are resolved. In the Resolved state, the
bundle activator can be launched in order to configure the bundle and possibly launch some
services. Figure F.2 presents the lifecycle of a bundle, that is managed by the OSGi platform in
a centralized fashion.

Figure F.2: Lifecycle of a bundle

Bundles can depend on external entities (they can require other bundles, an execution envi-
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ronment, a specific library, etc). Once a bundle is started, it assumes that those dependencies
were resolved. Bundles can express their dependencies as requirements on capabilities that
are provided by the runtime environment or other bundles.

Capabilities are attribute sets in a specific namespace and requirements are filter expressions
that assert the attributes of the capabilities. A requirement is satisfied when there is at least one
capability that matches the filter. The requirements are transitive: bundles can only provide their
capabilities when their own requirements are satisfied. The Require-Capability and Provided-
Capability headers are manifest headers that declare generic requirements and capabilities.
The OSGi framework can match the requirements to capabilities of other bundles in the resolving
phase.

Example 1 Let us consider the bundle A from Section F.2.1. We can assume that this bundle
exports the package ’eu.securechange.homes.feed.gateway.FeedBundlePackage’ and requires
the OSGi execution environment with a version greater or equal 4.0. This bundle then has the
following headers in its manifest file:
• Bundle-SymbolicName: eu.securechange.homes.feed.gateway.impl;
• Bundle-Version: 1.0;
• Export-Package: eu.securechange.homes.feed.gateway.FeedBundlePackage; version = 0.0.0;
• Require-Capability: osgi.ee; filter=“(version ≥ 4.0)”.

The require/provide capabilities mechanism is complex enough, but it has its drawbacks. One
of them is that the bundles themselves declare what they are going to provide to the platform.
In fact, it may happen that a bundle declares certain functionality (for example, provision of a
certain API), but does not provide it in reality. Consequently, some bundles can be resolved at a
moment when their needs are not satisfied, potentially crashing the framework.

Bundles can interact through two complementary mechanisms: the export/import of packages
and the service registration/lookup facility. A service is a normal Java object that is registered
under a Java interface with the service registry. Bundles can register services and search for
them, or receive notifications when their registration state changes.

A service interface is the specification of the service’s public methods. A developer creates
a service by implementing its service interface and registering it with the framework service
registry. When requesting a service from the framework, a bundle specifies the name of the
service interface and, optionally, a filter to narrow the search. In response, the framework first
sends ServiceReference objects of the services that satisfy the search filter. The actual service
object can then be acquired by passing the specific ServiceReference to the platform, providing
the caller has the ServicePermission[ServiceReference, GET] permission.

Security of the OSGi platform is based on the Java 2 security architecture. Each bundle is
associated with a set of permissions, that are queried at runtime. The OSGi platform can authenti-
cate code by download location or by signer (digital signature). The Conditional Permission Admin
service manages the permissions based on a comprehensive conditional model.

A bundle has local permissions defined by the developer in the file permissions.perm (per-
missions file in the sequel). These are the actual detailed permissions needed by this bundle
to operate. A framework also provides an administrative service to associate a set of system
permissions with a bundle. The bundle’s effective permissions are the intersection of the local
permissions and the system permissions. That is, a bundle cannot get more permissions than
its local permissions set. Thus a bundle developer can limit the possible permissions of a bundle,
but she cannot require a minimum set of necessary permissions to be granted and she cannot
directly influence the set of system permissions granted to the bundle.

The OSGi specification defines ServicePermission, BundlePermission and PackagePermission.
These are used to provide access to getting or registering a service, importing or exporting
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bundles and packages respectively.

Example 2 Bundle A from example 1 needs the following permissions (among others):
• ServicePermission[eu.securechange.homes.feed.gateway.FeedBundleService,REGISTER] to be able

to register the service;
• PackagePermission[eu.securechange.homes.feed.gateway.FeedBundlePackage,EXPORTONLY] to

be able to export the package.

F.3.1 Security Challenges

We assume the framework can host multiple third-parties’ bundles, and these bundles can freely
register services. The goal of the telecom provider (Telefonica) running the platform is to make
sure that there are no undesired security or functionality problems among different bundles
installed by the end user (who most likely does not even know what is a bundle and just sees
the web interfaces of the services). Thus a threat scenario under investigation is a case when a
bundle gains unauthorized access to the sensitive data of another bundle (security threat), or a
bundle is malfunctioning due to unavailability of a certain service (functionality threat). We now
discuss these threats separately in the light of the running example from Section F.2.1.

A confidentiality attack can be realized by the bundle A of provider SC.eu getting access
to the premium news feeds in service SB of provider Ex.com. This might happen if A imports
the package containing the service SB definition, requires the bundle B (thus importing all its
exported packages), or tries to get a reference to this service from the Service Registry and
then get access to the object referenced.

We now discuss how the current OSGi security management can address this security
threat. Import of a package or a require-bundle action can be granted if the requiring bundle
has corresponding permissions. Simple reviewing of the manifest file and permissions file of the
bundle A can report about a (potential) attempt to interact with the bundle B. However, there is
no convenient and simple way for the owner of the bundle B, the Ex.com provider, to declare
which other bundles are allowed to import its packages.

Package importing can be guarded by the permissions mechanism, as we discussed before.
Currently only the platform owner (the telecom provider) can define and manage policies in
the Conditional Permission Admin policy file. The Ex.com provider might contact the telecom
provider to ask him to set the required permissions, or its bundle B, being granted the necessary
permissions, can add new permissions to the Conditional Permission Admin policy file. These
approaches are organizationally cumbersome and costly, as they require the operator to push
the changes to its customers before any downloads of ex.com bundles, even the customers have
no intention of using them. The SxC paradigm, on the other hand, enables the bundle providers
with a way to specify in the bundle contracts the necessary authorizations. The framework can
then collect these authorizations from the bundles and incorporate them in the SxC policy on
demand.

Service usage is more tricky though. Again, the necessary authorizations for the service
usage (more precisely, GET permissions for service retrieval) can be delivered within bundle
contracts and incorporated into the policy file of the system. But the invocations of the methods
within a service, once the necessary reference is obtained, are not guarded by the permission
check, and usually the security checks are placed directly within the service code, thus mixing
the security logic with the execution logic.

Another solution, that is traditional for mobile Java-based component systems, could be to
ask Alice each time a specific permission is needed. But Alice is not the owner of the bundles to
make such decisions, nor is she interested to do so.

Let us consider a more complex scenario now.
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Example 3 Alice wants to install the Sims add-on from the thesims.ea.com provider. This add-
on is packaged into the bundle ’com.ea.thesims.FarmerSimsBundle’ and it will provide an inte-
gration of the Happy Farm account with her the Sims account. The functional requirement of
the thesims.ea.com provider follows: “The bundle ’com.ea.thesims.FarmerSimsBundle’ can be
installed if and only if the Facebook bundle is available on the platform and provides the service
’com.facebook.FarmerService’ ”.

The requirement in Example 3 means that ’com.ea.thesims.FarmerSimsBundle’ can be
installed only if the service ’com.facebook.FarmerService’ is already provided on the platform.
This requirement prevents the denial of service by the Sims bundle. The bundles are running on
top of a single JVM, thus the denial of service attack can cause a restart of the whole system
[22].

This functional requirement is, in fact, unsupported by the current OSGi specification. Re-
quirements/capabilities model cannot provide guarantees on the provided services (except that
their definition exists on the platform). We will further demonstrate how this kind of policy can be
enforced by the Security-by-Contract mechanisms, and how the requirements from the running
example in Section F.2.1 can be enforced in a flexible and efficient manner.

Further we will refer to thesims.ea.com provider as EA.com and ’com.ea.thesims.FarmerSimsBundle’
as C bundle.

F.4 The SxC solution

F.4.1 The OSGi Platform Formal Model

We start with the formal model of the OSGi platform. The entities on this platform are bundles
and services, but the model also takes into account the lifecycle of bundles, as it is an explicit
part of the OSGi platform.

Let ∆B be a domain of symbolic bundle names, ∆S be a domain of symbolic service names
and ∆P be a symbolic domain of package names. Let also ∆V be a standard domain of bundle
and package versions, ∆L be a domain of location strings for the bundles and ∆Sign be a
domain of bundle signers names. We also define a set of local permissions requested by each
bundle in its permissions file by Permissionsbundle, where each single permission perm is a pair
〈Target, Action〉. Packages are identified in the model by their fully-qualified symbolic names
and (optionally) versions, a package P ∈ ∆P ×∆V . If a package version is omitted, a default
value is expected.

Definition F.4.1 (Bundle) A bundle B is a tuple 〈nameB, state(B), exportsB, importsB, versionB,
PermissionsB, LocationB,SignerB〉, where nameB ∈ ∆B is the symbolic name of the bundle,
state(B) ∈ {Installed,Resolved,Starting,Active,Stopping} is the current state in which the bundle
resides at the moment, exportsB ⊆ ∆P ×∆V and importsB ⊆ ∆P ×∆V are the sets of packages
exported and imported by B correspondingly, versionB ⊆ ∆V is the bundle version, PermissionsB

is the set of local permissions of bundle B, LocationB is the download location and SignerB is
the signer (the provider) of the bundle B.

Uninstalled state is not considered, as the bundle is not functioning in this state and cannot be
transferred to other states, so this state is equivalent to deletion of a bundle.

We define an “is defined in” relation � for packages, bundles and service interfaces. Let B
be a bundle, S be a service interface and P be a package. We will denote by P � B the fact
that P is a package defined in the bundle B and by S � P the fact that the service interface S
is defined in the package P . For defining locations of bundles we define a ` relation (“comes
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from” ), we will denote as L ` B the fact that bundle B comes from location L ∈ ∆L. Also for
locations we can define a notion of location inclusion, we will denote as L1 ⊆ L2 if the string
location L1 includes the string location L2 as a prefix (without wildcards).

Example 4 Let us consider the bundle A discussed in Examples 1–2. This bundle can be re-
presented as a tuple 〈′eu.securechange.homes.gateway.impl′, state(A), exportsA, importsA, versionA,
PermissionsA, LocationA,SignerA〉, where state(A) depends on the current state, for example, we
can assume that this bundle was resolved successfully, as it does not include any external de-
pendencies, and currently state(A) = Active.
exportsA = {(′eu.securechange.homes.gateway.FeedBundlePackage′, 0.0.0)},
importsA = ∅,
versionA = 1.0,
LocationA = ’https://securechange.eu/bundle’,
SignerA = ’securechange.eu’. Relevant permissions are listed in Example 2, so we do not repeat
them.

Definition F.4.2 (OSGi Platform) The platform Θ is a tuple 〈B,S,R〉where B is a set of bundles
on the platform, S ⊆ ∆S is a set of services on the platform, and R ⊆ B × S is a service provi-
sion relation such that for each service S ∈ S there exists at least one bundle B1 ∈ B such that
the pair (B1, S) ∈ R, state(B1) ∈ {Active,Starting,Stopping}, and there exists bundle B2 ∈ B
such that state(B2) ∈ {Active,Starting,Stopping} and S �P such that P �B2 and P ∈ exportsB2 ,
and B1 = B2 or P ∈ importsB1 .

Thus, in the model we consider that a service can be provided by a bundle in an appropriate
state, and there should exist a bundle (possibly the same one) in an appropriate state that
exports a package containing the definition of this service. We will denote the fact that bundle
B1 can provide service S as S@B1.

We want to ensure that bundles interact on the platform in compliance with the pre-defined
security policies set by the bundle owners. Thus we start with the definition of bundle interaction.
Informally, two bundles interact if one of them imports an exported package from another, or
consumes a service provided by the other bundle.

Definition F.4.3 (Bundle Interaction) Let B1, B2 ∈ B. We say that B1 interacts with B2, deno-
ted B1 ./ B2 if at least one of the following conditions is satisfied:
• Exists P ∈ exportsB1 ∩ importsB2 such that P � B1 – there exists a package exported by B1

and imported by B2;
• Exists a local permission perm= 〈GET, S〉 ∈ PermissionsB2 where S is a service of bundle B1

(S@B1) – there exists a local permission of bundle B2 to get a service reference from bundle
B1.

This definition captures a potential direct control flow among bundles.
Functionality guarantees on the OSGi platform can vary. An interesting scenario was

discussed in Example 3, where a bundle wants to have some functional requirements fulfilled
prior to be loaded. The capabilities approach currently explored on the OSGi platforms is purely
static and declarative. We want to enhance it with the dynamics of evolving platforms and with
the guarantees given by the framework itself rather than by (potentially untrusted) bundles.

In Example 3, the C bundle wants to be installed on the platform only if a specific service is
already provided there. While the presence of the service interface definition can be (limitedly)
ensured by the capabilities approach, only the Framework (the platform in our model) itself can
assure that the service is indeed provided, or a certain bundle is in a desired state, or that a
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competitor’s bundle is not installed at all. If later, when the bundle will already be installed, the
platform will evolve such that the desired service will be unregistered or an undesired bundle
appear, the bundle can be notified about it through the event system and take the actions it
needs to protect itself (be removed, stop, notify the provider, etc).

There is also another interesting problem that can be considered. The primary purpose of the
requirement-capabilities model is to provide an explicit assertion about the environment before a
bundle becomes active and its code starts to run. This prevents bundles that cannot run because
they are not suitable for a given environment from becoming active, or even installed, when this
header is used by a management system. The SxC framework can become the management
system that will assure bundles they will never enter even the Installed state on a platform that is
not suitable for them.

F.4.2 Contracts and Policy

The claim of a bundle (sufficient to cover the security and functionality issues discussed
above) can be easily extracted from the bundle’s manifest file and permissions file. Thus
the ClaimExtractor component duties will be to extract this information. The policy of a bundle is
a new component specified in the contract that requires a permission notation and a notation for
functional requirements.

For contracts notation we will use the wildcard symbol ?.

Definition F.4.4 Let B be a bundle. The ContractB is a tuple 〈sec.rulesB, func.rulesB〉, such that:
– sec.rulesB is a set of permissions of the form 〈Action, Target, Authorized entity〉, that speci-
fies the security policy on the usage of B’s packages and services, where
• Action ∈ {IMPORT,GET};
• Target ∈

⋃
P�B

P ∪
⋃

S@B

S;

• Authorized entity ∈ (∆B × (∆V ∪ {?}))
⋃

∆L
⋃

∆Sign;
– func.rulesB is a set of functional requirements of B of the form 〈Desired state, F lag, Target, State〉,
that specifies the requests of the bundle for functionality available on the platform, where
• Desired state ∈ {Present,Not present};
• Flag ∈ {Bundle, Package, Service};
• Target and State differ in the following fashion:
• Flag = Bundle, then Target ∈ ∆B× (∆V ∪{?}) and State ∈ {Installed,Resolved,Starting,

Active,Stopping};
• Flag = Package, then Target ∈ ∆P × (∆V ∪ {?}) and State ∈ {Present, Exported};
• Flag = Service, then Target ∈ ∆S and State ∈ {Present, Provided};

Using the above notations bundles can express various security and functional requirements
on other bundles on the platform. Bundles can be installed on the platform if and only if all
their security and functional requirements are satisfied and their behavior is compliant with the
policies of all other bundles on the platform.

We propose the bundle contract to be delivered within its manifest file by using the possi-
bility to define new manifest file headers in the common header syntax. The newly defined
headers processed by the SxC manifest file parser (the ClaimExtractor), are sxc-secrules and
sxc-funcrules, they are described in Table F.2.

The security policy of the platform is defined as follows.

Definition F.4.5 (Security Policy of the Platform) For a platform Θ its security policy
PolicyΘ=

⋃
B∈B

sec.rulesB
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Header Contents
sxc-secrules Contains the bundle’s sec.rules separated

by comma sign (elements of permissions
are separated by semi sign)

sxc-funcrules Contains the bundle’s func.rules separated
by comma sign (elements of requirements
are separated by semi sign)

Table F.2: The SxC headers of the manifest file

Case Check
B imports a package P of A 〈IMPORT, P,B〉 ∈ sec.rulesA

B gets a service S registered by A 〈GET, S,B〉 ∈ sec.rulesA

B requires a bundle A to be present on the platform in exists bundle A ∈ B such that
Active state: 〈Present,Bundle, A,Active〉 ∈ func.rulesB state(A)=Active

B requires a package P to be exported on the platform: exists bundle A ∈ B such that
〈Present, Package, P,Exported〉 ∈ func.rulesB P �A and P ∈ exportsA

B requires a service S not to be provided on the platform: For all bundles A ∈ B there is no
〈Not present, Service, S, Provided〉 (A,S) ∈ R

Table F.3: Checks to be executed by the PolicyChecker

Example 5 Let us consider the running example from Section F.2.1. The bundles A, B and
F are installed on the platform. The security policy PolicyΘ of the Alice’s platform equals to
{sec.rulesA, sec.rulesB, sec.rulesF}.

The contracts of the bundles can be derived from the requirements listed in Table F.1. Thus,
sec.rulesF = {∅}. sec.rulesA = {〈GET,′ eu.securechange.homes.gateway.FeedBundleService′,
′securechange.eu′〉}.

sec.rulesB = {〈GET,′ com.example.FeedService′,′ example.com′〉, 〈IMPORT,′ com.exampleFeed−
ServicePackage′,′ example.com′〉, 〈GET,′ com.example.FeedHappyFarmerService′,′ example.com′〉,
〈GET,′ com.example.FeedHappyFarmerService′,′ facebook.com′〉}

For a platform Θ its functional state is at any given moment of time defined by the platform
itself: the installed bundles and provided services.

F.4.3 The SxC Checks

Definition F.4.6 Let Θ be an OSGi platform and B is a loaded bundle. We say Θ can host B
securely iff the following conditions are satisfied:
• Stable Security. For all bundles A ∈ B if A ./ B then a corresponding permission for B or

LocationB or SignerB exists in sec.rulesA, and if B ./ A then a corresponding permission for A or
LocationA or SignerA exists in sec.rulesB.
• Stable Functionality. All functional requirements described in func.rulesB are satisfied by

Θ.

We note that the stable functionality property may not hold for some other bundle A immediately
after the installation of bundle B on the platform. However, as we have discussed above, A will
be notified about the situation and can take appropriate actions.

Table F.3 lists some of the checks that are to be executed by the PolicyChecker in each case.
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Case Source of Information
B imports package P of A The manifest file of B,

the permissions file of B
B gets service S registered by A The permissions file of B
B requires bundle A to be present The platform maintains the bundles
on the platform in Active state and their states
B requires package P to be exported The platform identifies the
on the platform existing packages
B requires service S not The service registry maintains
to be provided on the platform the provided services

Table F.4: Sources of information for the SxC Framework

It can be demonstrated (proof by cases) that if the necessary checks for a new bundle B are
performed by the SxC framework, then the platform can host B securely.

Table F.4 contains the sources of information for the components. We can note here that
the permissions file could be a weak source of information, as it may only require AllPermission,
letting the system to define the upper bound of permissions for the bundle. This problem can
be solved by awareness of the developers that their bundles will be rejected if the required
permissions will be too demanding.

Conflicts among Bundles

Bundle interactions and functional requirements can give rise to conflict situations.

Example 6 Let us consider again the running example. Let the C (The Sims) bundle from
EA.com provider be installed and running. Then Alice might decide that she wastes too much
time playing Happy Farm. Alice wants to remove the Facebook bundle from the platform. But
the C bundle has specified the service from this bundle running on the platform as its functional
requirement. If the EA.com provider was careless, the removal of the Facebook bundle can
cause the C bundle to malfunction or even the framework to restart.

The choice in this situation is the following: either to remove the Facebook bundle and expect
that C bundle can crash, or to forbid the removal of the Facebook bundle. In both cases the
consequences are unpredictable. The situation could be improved if the Conflict Resolution
component would be provided within the SxC framework. The Conflict Resolution component
can take decisions in complex situations depending on the contents of the framework policy file
(some bundles may have more permissions than other do), and the system policy specified for
such situations.

F.4.4 Threats to Validity

Let us now discuss under which assumptions the SxC model works.
Authentication threats and bundle impersonalization are not treated in the model, as we

rely on the correct platform implementation with reliable authentication mechanisms. Thus we
identify entities in the model by their fully-qualified symbolic names, considering the names of
providers, bundles, packages and services to be unique.

Several features of the latest OSGi specification are not discussed in the current paper.
These are, for instance, the remote service provision and service factories, fragment or extension
bundles and library bundles (ones that cannot be activated). Some of these features can be
introduced easily in the model (like library bundles), and some of them are not related directly to
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the running example scenarios. We also did not consider delegation of permissions, assuming
each bundle provider acts on her own behalf.

The OSGi platform, besides the bundle lifecycles, maintains also the framework lifecycle,
which is not a part of our platform model. We do not treat the framework restarts in the model,
as they are not related to the considered attacks.

Conclusions and Possible Extensions

In this chapter we have presented the Security-by-Contract proposal for the OSGi platforms that
are the main target of the HOMES case study. We gave an overview of the OSGi Framework and
then described how the security and functionality checks already present on the OSGi platforms
can be benefited by the SxC approach.

The chapter contains the following contributions:

• A formal model of an OSGi platform;

• Discussion on possible security and functionality threats;

• A contracts notation for bundles, namely, the notations for security and functional require-
ments of the bundles;

• A sketch of the security and functionality checks that need to be carried out by the SxC
framework.

The main benefits that the SxC approach in the current form can bring to the OSGi platforms
are:
• Security The bundle providers can specify in an easy fashion the authorizations for access

to their bundles, packages and services. The policies can be updated easily and the update
does not require an interaction from the platform owner or a set of permissions to access the
Framework policy file.
• Functionality The bundle providers have more powerful tool for expressing their functional

requirements than just requirement/capability model. The contracts can express requirements
on the current state of the platform (including requirements on the states of the present bundles
or certain services provision, or absence of the competitor’s resources).

There are, of course, interesting research problems that can be investigated further. First
of all, the current definition of the bundle interactions is very restricted. The notion of bundle
interactions can be extended to include actual service method invocations or transitive service
calls and actual information flow specification. To the best of our knowledge, there are currently
no known investigations of information flow among bundles, probably because of the complicated
service provision model.

For the functionality issues, it would be interesting to extend the current functional require-
ments notation to include more interesting and meaningful functional dependencies descriptions.

Finally, the Conflict Resolution component can be proposed, that can incorporate more
complex logic for solving conflicts among bundles. This logic can include analysis of conse-
quences of the decision made (if a bundle will crash after its functional dependency is gone or
the developers have considered this possibility and there is a safety net), policy on when and
how to prompt the user, etc.
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